Skip to main content

Recursive Directional Ligation Approach for Cloning Recombinant Spider Silks

  • Protocol
  • First Online:
Peptide Self-Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1777))

Abstract

Recent advances in genetic engineering have provided a route to produce various types of recombinant spider silks. Different cloning strategies have been applied to achieve this goal (e.g., concatemerization, step-by-step ligation, recursive directional ligation). Here we describe recursive directional ligation as an approach that allows for facile modularity and control over the size of the genetic cassettes. This approach is based on sequential ligation of genetic cassettes (monomers) where the junctions between them are formed without interrupting key gene sequences with additional base pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yigit S, Dinjaski N, Kaplan DL (2016) Fibrous proteins: at the crossroads of genetic engineering and biotechnological applications. Biotechnol Bioeng 113:913–929

    Article  CAS  PubMed  Google Scholar 

  2. Lin S, Ryu S, Tokareva O, Gronau G, Jacobsen MM, Huang W, Rizzo DJ, Li D, Staii C, Pugno NM, Wong JY, Kaplan DL, Buehler MJ (2015) Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres. Nat Commun 6:6892

    Article  PubMed  Google Scholar 

  3. Huang W, Krishnaji ST, Hu X, Kaplan D, Cebe P (2011) Heat capacity of spider silk-like block copolymers. Macromolecules 44:5299–5309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Krishnaji ST, Bratzel G, Kinahan ME, Kluge JA, Staii C, Wong JY, Buehler MJ, Kaplan DL (2013) Sequence-structure-property relationships of recombinant spider silk proteins: integration of biopolymer design, processing, and modeling. Adv Funct Mater 23:241–253

    Article  CAS  Google Scholar 

  5. Huang W, Krishnaji S, Kaplan D, Cebe P (2012) Thermal analysis of spider silk inspired di-block copolymers in the glass transition region by TMDSC. J Therm Anal Calorim 109:1193–1201

    Article  CAS  Google Scholar 

  6. Ittah S, Cohen S, Garty S, Cohn D, Gat U (2006) An essential role for the C-terminal domain of a dragline spider silk protein in directing fiber formation. Biomacromolecules 7:1790–1795

    Article  CAS  PubMed  Google Scholar 

  7. Rabotyagova OS, Cebe P, Kaplan DL (2009) Self-assembly of genetically engineered spider silk block copolymers. Biomacromolecules 10:229–236

    Article  CAS  PubMed  Google Scholar 

  8. Tokareva O, Michalczechen-Lacerda VA, Rech EL, Kaplan DL (2013) Recombinant DNA production of spider silk proteins. Microb Biotechnol 6:651–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meyer DE, Chilkoti A (2002) Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules 3:357–367

    Article  CAS  PubMed  Google Scholar 

  10. Wang Q, Xia X, Huang W, Lin Y, Xu Q, Kaplan DL (2014) High throughput screening of dynamic silk-elastin-like protein biomaterials. Adv Funct Mater 24:4303–4310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wright ER, Conticello VP (2002) Self-assembly of block copolymers derived from elastin-mimetic polypeptide sequences. Adv Drug Deliv Rev 54:1057–1073

    Article  CAS  PubMed  Google Scholar 

  12. Prince JT, McGrath KP, DiGirolamo CM, Kaplan DL (1995) Construction, cloning, and expression of synthetic genes encoding spider dragline silk. Biochemistry 34:10879–10885

    Article  CAS  PubMed  Google Scholar 

  13. Higashiya S, Topilina NI, Ngo SC, Zagorevskii D, Welch JT (2007) Design and preparation of β-sheet forming repetitive and block-copolymerized polypeptides. Biomacromolecules 8:1487–1497

    Article  CAS  PubMed  Google Scholar 

  14. Huang W, Krishnaji ST, Tokareva OR, Kaplan D, Cebe P (2014) Influence of water on protein transitions: morphology and secondary structure. Macromolecules 47:8107–8114

    Article  CAS  Google Scholar 

  15. Krishnaji ST, Huang W, Rabotyagova O, Kharlampieva E, Choi I, Tsukruk VV, Naik R, Cebe P, Kaplan DL (2011) Thin film assembly of spider silk-like block copolymers. Langmuir 27:1000–1008

    Article  CAS  PubMed  Google Scholar 

  16. Huang W, Krishnaji S, Rabotyagova Tokareva O, Kaplan D, Cebe P (2014) Influence of water on protein transitions: thermal analysis. Macromolecules 47:8098–8106

    Article  CAS  Google Scholar 

  17. Xia X-X, Qian Z-G, Ki CS, Park YH, Kaplan DL, Lee SY (2010) Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci 107:14059–14063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

Download references

Acknowledgments

We thank the NIH (P41 EB002520), the AFOSR, and the NSF for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Kaplan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dinjaski, N., Huang, W., Kaplan, D.L. (2018). Recursive Directional Ligation Approach for Cloning Recombinant Spider Silks. In: Nilsson, B., Doran, T. (eds) Peptide Self-Assembly. Methods in Molecular Biology, vol 1777. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7811-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7811-3_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7809-0

  • Online ISBN: 978-1-4939-7811-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics