Skip to main content

Methods to Characterize the Nanostructure and Molecular Organization of Amphiphilic Peptide Assemblies

  • Protocol
  • First Online:
Book cover Peptide Self-Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1777))

Abstract

Methods to characterize the nanostructure and molecular organization of aggregates of peptides such as amyloid or amphiphilic peptide assemblies are reviewed. We discuss techniques to characterize conformation and secondary structure including circular and linear dichroism and FTIR and Raman spectroscopies, as well as fluorescence methods to detect aggregation. NMR spectroscopy methods, especially solid-state NMR measurements to probe beta-sheet packing motifs, are also briefly outlined. Also discussed are scattering methods including X-ray diffraction and small-angle scattering techniques including SAXS (small-angle X-ray scattering) and SANS (small-angle neutron scattering) and dynamic light scattering. Imaging methods are direct methods to uncover features of peptide nanostructures, and we provide a summary of electron microscopy and atomic force microscopy techniques. Selected examples are highlighted showing data obtained using these techniques, which provide a powerful suite of methods to probe ordering from the molecular scale to the aggregate superstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Creighton TE (1993) Proteins. Structures and molecular properties. W.H. Freeman, New York

    Google Scholar 

  2. Woolfson DN (2005) The design of coiled-coil structures and assemblies. Adv Protein Chem 70:79–112

    Article  CAS  PubMed  Google Scholar 

  3. Woolfson DN, Bartlett GJ, Bruning M, Thomson AR (2012) New currency for old rope: from coiled-coil assemblies to α-helical barrels. Curr Opin Struct Biol 11:432–441

    Article  CAS  Google Scholar 

  4. Apostolovic B, Danial M, Klok HA (2010) Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials. Chem Soc Rev 39:3541–3575

    Article  CAS  PubMed  Google Scholar 

  5. Santoso SS, Vauthey S, Zhang S (2002) Structure, function and applications of amphiphilic peptides. Curr Opin Colloid Interface Sci 7:262–266

    Article  CAS  Google Scholar 

  6. Zhang SG (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178

    Article  CAS  PubMed  Google Scholar 

  7. Zhao X, Zhang S (2004) Fabrication of molecular materials using peptide construction motifs. Trends Biotechnol 22:470–476

    Article  CAS  PubMed  Google Scholar 

  8. Löwik DWPM, van Hest JCM (2004) Peptide based amphiphiles. Chem Soc Rev 33:234–245

    Article  PubMed  Google Scholar 

  9. Cavalli S, Kros A (2008) Scope and applications of amphiphilic alkyl- and lipopeptides. Adv Mater 20:627–631

    Article  CAS  Google Scholar 

  10. Versluis F, Marsden HR, Kros A (2010) Power struggles in peptide-amphiphile nanostructures. Chem Soc Rev 39:3434–3444

    Article  CAS  PubMed  Google Scholar 

  11. Cui HG, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Pept Sci 94:1–18

    Article  CAS  Google Scholar 

  12. Hamley IW (2011) Self-assembly of amphiphilic peptides. Soft Matter 7:4122–4138

    Article  CAS  Google Scholar 

  13. Dehsorkhi A, Castelletto V, Hamley IW (2014) Self-assembling amphiphilic peptides. J Pept Sci 20:453–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nelson R, Eisenberg D (2006) Recent atomic models of amyloid fibril structure. Curr Opin Struct Biol 16:260–265

    Article  CAS  PubMed  Google Scholar 

  15. Nelson R, Eisenberg D (2006) Structural models of amyloid-like fibrils. Adv Protein Chem 73:235–282

    Article  CAS  PubMed  Google Scholar 

  16. Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-β spine of amyloid-like fibrils. Nature (London) 435:773–778

    Article  CAS  Google Scholar 

  17. Eanes ED, Glenner GG (1968) X-ray diffraction studies on amyloid filaments. J Histochem Cytochem 16:673–677

    Article  CAS  PubMed  Google Scholar 

  18. Kirschner DA, Abraham C, Selkoe DJ (1986) X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-β conformation. Proc Natl Acad Sci U S A 83:503–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sunde M, Blake CCF (1997) The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv Protein Chem 50:123–159

    Article  CAS  PubMed  Google Scholar 

  20. Serpell LC (2000) Alzheimer’s amyloid fibrils: structure and assembly. Biochim Biophys Acta 1502:16–30

    Article  CAS  PubMed  Google Scholar 

  21. Makin OS, Serpell LC (2005) Structures for amyloid fibrils. FEBS J 272:5950–5961

    Article  CAS  PubMed  Google Scholar 

  22. Hamley IW, Castelletto V, Moulton CM, Rodriguez-Perez J, Squires AM, Eralp T, Held G, Hicks M, Rodger A (2010) Alignment of a model amyloid peptide fragment in bulk and at a solid surface. J Phys Chem B 114:8244–8254

    Article  CAS  PubMed  Google Scholar 

  23. Hamley IW (2012) The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem Rev 112:5147–5192

    Article  CAS  PubMed  Google Scholar 

  24. Morris K, Serpell L (2010) From natural to designer self-assembling biopolymers, the structural characterization of fibrous proteins and peptides using fibre diffraction. Chem Soc Rev 39:3445–3453

    Article  CAS  PubMed  Google Scholar 

  25. Makin OS, Sikorski P, Serpell LC (2007) CLEARER: a new tool for the analysis of X-ray fibre diffraction patterns and diffraction simulation from atomic structural models. J Appl Crystallogr 40:966–972

    Article  CAS  Google Scholar 

  26. Squires AM, Devlin GL, Gras SL, Tickler AK, MacPhee CE, Dobson CM (2006) X-ray scattering study of the effect of hydration on the cross-β structure of amyloid fibrils. J Am Chem Soc 128:11738–11739

    Article  CAS  PubMed  Google Scholar 

  27. Papapostolou D, Smith AM, Atkins EDT, Oliver SJ, Ryadnov MG, Serpell LC, Woolfson DN (2007) Engineering nanoscale order into a designed protein fiber. Proc Natl Acad Sci U S A 104:10853–10858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald AM, Kirkland M, Serpell LC, Butler MF, Woolfson DN (2009) Rational design and application of responsive alpha-helical peptide hydrogels. Nat Mater 8:596–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Makin OS, Serpell LC (2004) The structure of amyloid. Fibre Diffraction Review 12:29–35

    Google Scholar 

  30. Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CCF (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273:729–739

    Article  CAS  PubMed  Google Scholar 

  31. Hill RJA, Sedman VL, Allen S, Williams PM, Paoli M, Adler-Abramovich L, Eaves L, Tendler SJB (2007) Alignment of aromatic peptide tubes in strong magnetic fields. Adv Mater 19:4474–4479

    Article  CAS  Google Scholar 

  32. Hamley IW (2007) Peptide fibrillisation. Angew Chem 46:8128–8147

    Article  CAS  Google Scholar 

  33. Levine H (1993) Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2:404–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wood SJ, Maleef B, Hart T, Wetzel R (1996) Physical, morphological and functional differences between pH 5.8 and 7.4 aggregates of the Alzheimer’s amyloid peptide Aβ. J Mol Biol 256:870–877

    Article  CAS  PubMed  Google Scholar 

  35. Hamley IW (2007) Introduction to soft matter, Revised edn. Wiley, Chichester

    Google Scholar 

  36. Kalyanasundaram K, Thomas JK (1977) Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99:2039–2044

    Article  CAS  Google Scholar 

  37. Winnik FM (1993) Photophysics of preassociated pyrenes in aqueous polymer-solutions and in other organized media. Chem Rev 93:587–614

    Article  CAS  Google Scholar 

  38. Guler MO, Claussen RC, Stupp SI (2005) Encapsulation of pyrene within self-assembled peptide amphiphile nanofibers. J Mater Chem 15:4507–4512

    Article  CAS  Google Scholar 

  39. Sabate R, Estelrich J (2005) Evidence of the existence of micelles in the fibrillogenesis of beta-amyloid peptide. J Phys Chem B 109:11027–11032

    Article  CAS  PubMed  Google Scholar 

  40. Castelletto V, Cheng G, Greenland BW, Hamley IW (2011) Tuning the self-assembly of the bioactive dipeptide L-carnosine by incorporation of a bulky aromatic substituent. Langmuir 27:2980–2988

    Article  CAS  PubMed  Google Scholar 

  41. Castelletto V, Cheng G, Stain C, Connon CJ, Hamley IW (2012) Self-assembly of a peptide amphiphile containing L-carnosine and its mixtures with a multilamellar vesicle forming lipid. Langmuir 28:11599–11608

    Article  CAS  PubMed  Google Scholar 

  42. Jones RR, Castelletto V, Connon CJ, Hamley IW (2013) Collagen stimulating effect of peptide amphiphile C16-KTTKS on human fibroblasts. Mol Pharm 10:1063–1069

    Article  CAS  PubMed  Google Scholar 

  43. Castelletto V, Gouveia RJ, Connon CJ, Hamley IW (2013) New RGD-peptide amphiphile mixtures containing a negatively charged diluent. Faraday Discuss 166:381–397

    Article  CAS  PubMed  Google Scholar 

  44. Hamley IW, Dehsorkhi A, Castelletto V (2013) Coassembly in binary mixtures of peptide amphiphiles containing oppositely charged residues. Langmuir 29:5050–5059

    Article  CAS  PubMed  Google Scholar 

  45. Castelletto V, Gouveia RJ, Connon CJ, Hamley IW, Seitsonen J, Nykänen A, Ruokolainen J (2014) Alanine-rich amphiphilic peptide containing the RGD cell adhesion motif: a coating material for human fibroblast attachment and culture. Biomater Sci 2:362–369

    Article  CAS  PubMed  Google Scholar 

  46. Fowler M, Siddique B, Duhamel J (2013) Effect of sequence on the ionization behavior of a series of amphiphilic polypeptides. Langmuir 29:4451–4459

    Article  CAS  PubMed  Google Scholar 

  47. Hamley IW, Kirkham S, Dehsorkhi A, Castelletto V, Reza M, Ruokolainen J (2014) Toll-like receptor agonist lipopeptides self-assemble into distinct nanostructures. Chem Commun 50:15948–15951

    Article  CAS  Google Scholar 

  48. Wilhelm M, Zhao C-L, Wang Y, Xu R, Winnik MA, Mura J-L, Riess G, Croucher MD (1991) Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules 24:1033–1040

    Article  CAS  Google Scholar 

  49. Johnsson M, Hansson P, Edwards K (2001) Spherical micelles and other self-assembled structures in dilute aqeuous mixtures of poly(ethylene glycol) lipids. J Phys Chem B 105:8420–8430

    Article  CAS  Google Scholar 

  50. Decandio CC, Silva ER, Hamley IW, Castelletto V, Liberato MS, Oliveira VX, Oliveira CLP, Alves WA (2015) Self-assembly of a designed alternating arginine/phenylalanine oligopeptide. Langmuir 31:4513–4523

    Article  CAS  PubMed  Google Scholar 

  51. LeVine H (1999) Quantification of β-sheet amyloid fibril structures with thioflavin T. In: Wetzel R (ed) Methods in enzymology, vol 309. Academic, San Diego, pp 274–284

    Google Scholar 

  52. Santra MK, Banerjee A, Krishnakumar SS, Rahaman O, Panda D (2004) Multiple-probe analysis of folding and unfolding pathways of human serum albumin - evidence for a framework mechanism of folding. Eur J Biochem 271:1789–1797

    Article  CAS  PubMed  Google Scholar 

  53. Jha S, Snell JM, Sheftic SR, Patil SM, Daniels SB, Kolling FW, Alexandrescu AT (2014) pH dependence of amylin fibrillization. Biochemistry 53:300–310

    Article  CAS  PubMed  Google Scholar 

  54. van den Heuvel M, Baptist H, Venema P, van der Linden E, Löwik D, van Hest JCM (2011) Mechanical and thermal stabilities of peptide amphiphile fibres. Soft Matter 7:9737–9743

    Article  CAS  Google Scholar 

  55. Nagai A, Nagai Y, Qu HJ, Zhang SG (2007) Dynamic behaviors of lipid-like self-assembling peptide A6D and A6K nanotubes. J Nanosci Nanotechnol 7:2246–2252

    Article  CAS  PubMed  Google Scholar 

  56. Khoe U, Yang YL, Zhang SG (2008) Synergistic effect and hierarchical nanostructure formation in mixing two designer lipid-like peptide surfactants ac-A6D-OH and ac-A6K-NH2. Macromol Biosci 8:1060–1067

    Article  CAS  PubMed  Google Scholar 

  57. Hamley IW, Nutt DR, Brown GD, Miravet JF, Escuder B, Rodríguez-Llansola F (2010) Influence of the solvent on the self-assembly of a modified amyloid beta peptide fragment. II. NMR and computer simulation investigation. J Phys Chem B 114:940–951

    Article  CAS  PubMed  Google Scholar 

  58. Miravet JF, Escuder B, Segarra-Maset MD, Tena-Solsona M, Hamley IW, Dehsorkhi A, Castelletto V (2013) Self-assembly of a peptide amphiphile: transition from nanotape fibrils to micelles. Soft Matter 9:3558–3564

    Article  CAS  Google Scholar 

  59. Girych M, Gorbenko G, Trusova V, Adachi E, Mizuguchi C, Nagao K, Kawashima H, Akaji K, Lund-Katz S, Phillips MC, Saito H (2014) Interaction of thioflavin T with amyloid fibrils of apolipoprotein A-I N-terminal fragment: resonance energy transfer study. J Struct Biol 185:116–124

    Article  CAS  PubMed  Google Scholar 

  60. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751:119–139

    Article  CAS  PubMed  Google Scholar 

  61. Woody RW (1995) Circular dichroism. Methods Enzymol 246:34–71

    Article  CAS  PubMed  Google Scholar 

  62. Shi ZS, Woody RW, Kallenbach NR (2002) Is polyproline II a major backbone conformation in unfolded proteins? In: Rose GD (ed) Unfolded proteins, Advances in protein chemistry, vol 62. Academic, San Diego, pp 163–240

    Chapter  Google Scholar 

  63. Paramonov SE, Jun H-W, Hartgerink JD (2006) Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J Am Chem Soc 128:7291–7298

    Article  CAS  PubMed  Google Scholar 

  64. Woody RW (2009) Circular dichroism spectrum of peptides in the poly(pro)II conformation. J Am Chem Soc 131:8234–8245

    Article  CAS  PubMed  Google Scholar 

  65. Castelletto V, Hamley IW, Cenker C, Olsson U, Adamcik J, Mezzenga R, Miravet JF, Escuder B, Rodriguez-Llansola F (2011) Influence of end-capping on the self-assembly of model amyloid peptide fragments. J Phys Chem B 115:2107–2116

    Article  CAS  PubMed  Google Scholar 

  66. Bulheller BM, Rodger A, Hirst JD (2007) Circular and linear dichroism of proteins. Phys Chem Chem Phys 9:2020–2035

    Article  CAS  PubMed  Google Scholar 

  67. Reed J, Reed A (1997) A set of constructed type spectra for the practical estimation of peptide secondary structure from circular dichroism. Anal Biochem 254:36–40

    Article  CAS  PubMed  Google Scholar 

  68. Rodger A, Nordén B (1997) Circular dichroism and linear dichroism. Oxford University Press, Oxford

    Google Scholar 

  69. Nordén B, Rodger A, Dafforn TR (2010) Linear dichroism and circular dichroism: a textbook on polarized-light spectroscopy. Royal Society of Chemistry, Cambridge

    Google Scholar 

  70. Surewicz WK, Mantsch HH, Chapman D (1993) Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry 32:389–394

    Article  CAS  PubMed  Google Scholar 

  71. Stuart B (1997) Biological applications of infrared spectroscopy. Wiley, Chichester

    Google Scholar 

  72. Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 30:95–120

    Article  CAS  PubMed  Google Scholar 

  73. Hiramatsu H, Kitagawa T (2005) FT-IR approaches on amyloid fibril structure. Biochim Biophys Acta 1753:100–107

    Article  CAS  PubMed  Google Scholar 

  74. Haris P, Chapman D (1995) The conformational analysis of peptide using Fourier transform IR spectroscopy. Biopolymers 37:251–263

    Article  CAS  PubMed  Google Scholar 

  75. Barth A, Zscherp C (2002) What vibrations tell us about proteins. Q Rev Biophys 35:369–430

    Article  CAS  PubMed  Google Scholar 

  76. Kubelka J, Keiderling TA (2001) The anomalous infrared amide I intensity distribution in 13C isotopically labeled peptide β-sheets comes from extended, multiple-stranded structures. An ab initio study. J Am Chem Soc 123:6142–6150

    Article  CAS  PubMed  Google Scholar 

  77. Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides and proteins. Adv Protein Chem 38:181–364

    Article  CAS  PubMed  Google Scholar 

  78. Bellamy LJ (1975) The infra-red spectra of complex molecules. Chapman and Hall, London

    Book  Google Scholar 

  79. Castelletto V, Moulton CM, Cheng G, Hamley IW, Hicks MR, Rodger A, López-Pérez DE, Revilla-López G, Alemán C (2011) Self-assembly of fmoc-tetrapeptides based on the RGDS cell adhesion motif. Soft Matter 7:11405–11415

    Article  CAS  Google Scholar 

  80. Pelton JT, McLean LR (2000) Spectroscopic methods for analysis of protein secondary structure. Anal Biochem 277:167–176

    Article  CAS  PubMed  Google Scholar 

  81. Gaussier H, Morency H, Lavoie MC, Subirade M (2002) Replacement of trifluoroacetic acid with HCl in the hydrophobic purification steps of pediocin PA-1: a structural effect. Appl Environ Microbiol 68:4803–4808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Eker F, Griebenow K, Schweitzer-Stenner R (2004) Aβ1-28 fragment of the amyloid peptide predominantly adopts a polypropyline II conformation in acidic solution. Biochemistry 43:6893–6898

    Article  CAS  PubMed  Google Scholar 

  83. Liang Y, Pingali SV, Jogalekar AS, Snyder JP, Thiyagarajan P, Lynn DG (2008) Cross-strand pairing and amyloid assembly. Biochemistry 47:10018–10026

    Article  CAS  PubMed  Google Scholar 

  84. Mehta AK, Lu K, Childers WS, Liang S, Dong J, Snyder JP, Pingali SV, Thiyagarajan P, Lynn DG (2008) Facial symmetry in protein self-assembly. J Am Chem Soc 130:9829–9835

    Article  CAS  PubMed  Google Scholar 

  85. Rodríguez-Pérez J, Hamley IW, Gras SL, Squires AM (2012) Local orientational disorder in peptide fibrils probed by a combination of residue-specific 13C-18O labelling, polarised infrared spectroscopy and molecular combing. Chem Commun 48:11835–11837

    Article  CAS  Google Scholar 

  86. Middleton DA, Madine J, Castelletto V, Hamley IW (2013) New insights into the molecular architecture of a peptide nanotube using FTIR and solid-state NMR spectroscopy combined with sample alignment. Angew Chem Int Ed Engl 52:10537–10540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rodriguez-Perez J, Hamley IW, Squires AM (2011) Infrared linear dichroism spectroscopy on amyloid fibrils aligned by molecular combing. Biomacromolecules 12:1810–1821

    Article  CAS  PubMed  Google Scholar 

  88. Nafie LA (1997) Infrared and raman vibrational optical activity: theoretical and experimental aspects. Annu Rev Phys Chem 48:357–386

    Article  CAS  PubMed  Google Scholar 

  89. Keiderling TA (2002) Protein and peptide secondary structure and conformational determination with vibrational circular dichroism. Curr Opin Chem Biol 6:682–688

    Article  CAS  PubMed  Google Scholar 

  90. Costa PR, Kocisko DA, Sun BQ, Lansbury PT, Griffin RG (1997) Determination of peptide amide configuration in a model amyloid fibril by solid-state NMR. J Am Chem Soc 119:10487–10493

    Article  CAS  Google Scholar 

  91. Benzinger TLS, Gregory DM, Burkoth TS, Miller-Auer H, Lynn DG, Botto RE, Meredith SC (2000) Two-dimensional structure of β-amyloid(10-35) fibrils. Biochemistry 39:3491–3499

    Article  CAS  PubMed  Google Scholar 

  92. Siemer AB, Ritter C, Ernst M, Riek R, Meier BH (2005) High-resolution solid-state NMR spectroscopy of the prion protein HET-s in its amyloid conformation. Angew Chem Int Ed Engl 44:2441–2444

    Article  CAS  PubMed  Google Scholar 

  93. Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D, Baldus M (2005) Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proc Natl Acad Sci U S A 102:15871–15876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Balbach JJ, Ishii Y, Antzutkin ON, Leapman RD, Rizzo NW, Dyda F, Reed J, Tycko R (2000) Amyloid fibril formation by Aβ16-22, a seven-residue fragment of the Alzheimer’s β-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 39:13748–13759

    Article  CAS  PubMed  Google Scholar 

  95. Ma BY, Nussinov R (2002) Stabilities and conformations of Alzheimer’s beta-amyloid peptide oligomers (Aβ16-22,16-35, and Aβ10-35): sequence effects. Proc Natl Acad Sci U S A 99:14126–14131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tycko R (2004) Progress towards a molecular-level structural understanding of amyloid fibrils. Curr Opin Struct Biol 14:96–103

    Article  CAS  PubMed  Google Scholar 

  97. Tycko R (2006) Molecular structure of amyloid fibrils: insights from solid-state NMR. Q Rev Biophys 39:1–55

    Article  CAS  PubMed  Google Scholar 

  98. Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H, Schubert D, Riek R (2005) 3D structure of Alzheimer’s amyloid-β(1-42) fibrils. Proc Natl Acad Sci U S A 102:17342–17347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Castelletto V, Hamley IW, Segarra-Maset MD, Gumbau CB, Miravet JF, Escuder B, Seitsonen J, Ruokolainen J (2014) Tuning chelation by the surfactant-like peptide A6H using predetermined pH values. Biomacromolecules 15:591–598

    Article  CAS  PubMed  Google Scholar 

  100. Lomakin A, Chung DS, Benedek GB, Kirschner DA, Teplow DB (1996) On the nucleation and growth of amyloid β-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci U S A 93:1125–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Riseman J, Kirkwood JG (1950) J Chem Phys 18:512–516

    Article  CAS  Google Scholar 

  102. Pallitto MM, Ghanta J, Heinzelman P, Kiessling LL, Murphy RM (1999) Recognition sequence design for peptidyl modulators of β-amyloid aggregation and toxicity. Biochemistry 38:3570–3578

    Article  CAS  PubMed  Google Scholar 

  103. Shen C-L, Fitzgerald MC, Murphy RM (1994) Effect of acid predissolution on fibril size and fibril flexibility of synthetic β-amyloid peptide. Biophys J 67:1238–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Krysmann MJ, Castelletto V, Kelarakis A, Hamley IW, Hule RA, Pochan DJ (2008) Self-assembly and hydrogelation of an amyloid peptide fragment. Biochemistry 47:4597–4605

    Article  CAS  PubMed  Google Scholar 

  105. Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB (1997) Amyloid β-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem 272:22364–22372

    Article  CAS  PubMed  Google Scholar 

  106. Kusumoto Y, Lomakin A, Teplow DB, Benedek GB (1998) Temperature dependence of amyloid β-protein fibrillization. Proc Natl Acad Sci U S A 95:12277–12282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sokolowski F, Modler AJ, Masuch R, Zirwer D, Baier M, Lutsch G, Moss DA, Gast K, Naumann D (2003) Formation of critical oligomers is a key event during conformational transition of recombinant Syrian hamster prion protein. J Biol Chem 278:40481–40492

    Article  CAS  PubMed  Google Scholar 

  108. Modler AJ, Gast K, Lutsch G, Damaschun G (2003) Assembly of amyloid protofibrils via critical oligomers—a novel pathway of amyloid formation. J Mol Biol 325:135–148

    Article  CAS  PubMed  Google Scholar 

  109. Pedersen JS (1997) Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Adv Colloid Interf Sci 70:171–210

    Article  CAS  Google Scholar 

  110. Hamley IW, Krysmann MJ, Castelletto V, Kelarakis A, Noirez L, Hule RA, Pochan D (2008) Nematic and columnar ordering of a PEG-peptide conjugate in aqueous solution. Chem Eur J 14:11369–11374

    Article  CAS  PubMed  Google Scholar 

  111. Hamley IW, Krysmann MJ, Castelletto V, Noirez L (2008) Multiple lyotropic polymorphism of a PEG-peptide diblock copolymer in aqueous solution. Adv Mater 20:4394–4397

    Article  CAS  Google Scholar 

  112. Pabst G, Rappolt M, Amenitsch H, Laggner P (2000) Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality X-ray data. Phys Rev E 62:4000–4009

    Article  CAS  Google Scholar 

  113. Hamley IW, Dehsorkhi A, Castelletto V (2013) Self-assembled arginine-coated peptide nanosheets in water. Chem Commun 49:1850–1852

    Article  CAS  Google Scholar 

  114. http://kur.web.psi.ch/sans1/SANSSoft/sasfit.html (2015)

  115. Caillé A (1972) X-ray scattering by smectic-a crystals. CR Hebd Seances Acad Sci (Paris) B 274:891–893

    Google Scholar 

  116. Lu K, Jacob J, Thiyagarajan P, Conticello VP, Lynn DG (2003) Exploiting amyloid fibril lamination for nanotube self assembly. J Am Chem Soc 125:6391–6393

    Article  CAS  PubMed  Google Scholar 

  117. Hamley IW, Dehsorkhi A, Castelletto V, Furzeland S, Atkins D, Seitsonen J, Ruokolainen J (2013) Reversible helical ribbon unwinding transition of a self-assembling peptide amphiphile. Soft Matter 9:9290–9293

    Article  CAS  Google Scholar 

  118. Dehsorkhi A, Hamley IW, Seitsonen J, Ruokolainen J (2013) Tuning self-assembled nanostructures through enzymatic degradation of a peptide amphiphile. Langmuir 29:6665–6672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hamley IW, Dehsorkhi A, Jauregi P, Seitsonen J, Ruokolainen J, Coutte F, Chataigné G, Jacques P (2013) Self-assembly of three bacterially-derived bioactive lipopeptides. Soft Matter 9:9572–9578

    Article  CAS  PubMed  Google Scholar 

  120. Dehsorkhi A, Gouveia RJ, Smith AM, Hamley IW, Castelletto V, Connon CJ, Reza M, Ruokolainen J (2015) Self-assembly of a dual functional bioactive peptide amphiphile incorporating both matrix metalloprotease substrate and cell adhesion motifs. Soft Matter 11:3115–3124

    Article  CAS  PubMed  Google Scholar 

  121. Adamcik J, Mezzenga R (2012) Study of amyloid fibrils via atomic force microscopy. Curr Opin Colloid Interface Sci 17:369–376

    Article  CAS  Google Scholar 

  122. Usov I, Adamcik J, Mezzenga R (2013) Polymorphism in bovine serum albumin fibrils: morphology and statistical analysis. Faraday Discuss 166:151–162

    Article  CAS  PubMed  Google Scholar 

  123. Usov I, Mezzenga R (2014) Correlation between nanomechanics and polymorphic conformations in amyloid fibrils. ACS Nano 8:11035–11041

    Article  CAS  PubMed  Google Scholar 

  124. Usov I, Mezzenga R (2015) FiberApp: an open-source software for tracking and analyzing polymers, filaments, biomacromolecules, and fibrous objects. Macromolecules 48:1269–1280

    Article  CAS  Google Scholar 

  125. Adamcik J, Lara C, Usov I, Jeong JS, Ruggeri FS, Dietler G, Lashuel HA, Hamley IW, Mezzenga R (2012) Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method. Nanoscale 4:4426–4429

    Article  CAS  PubMed  Google Scholar 

  126. Cui H, Hodgdon TK, Kaler EW, Abezgaous L, Danino D, Lubovsky M, Talmon Y, Pochan DJ (2007) Elucidating the assembled structure of amphiphiles in solution via cryogenic-transmission electron microscopy. Soft Matter 3:945–955

    Article  CAS  PubMed  Google Scholar 

  127. Castelletto V, Hamley IW, Perez J, Abezgauz L, Danino D (2010) Fibrillar superstructure from extended nanotapes formed by a collagen-stimulating peptide. Chem Commun 46:9185–9187

    Article  CAS  Google Scholar 

  128. Castelletto V, Gouveia RJ, Connon CJ, Hamley IW, Seitsonen J, Ruokolainen J, Longo E, Siligardi G (2014) Influence of elastase on alanine-rich peptide hydrogels. Biomater Sci 2:867–874

    Article  CAS  PubMed  Google Scholar 

  129. Hamley IW, Dehsorkhi A, Castelletto V, Walter MNM, Connon CJ, Reza M, Ruokolainen J (2015) Self-assembly and collagen stimulating activity of a peptide amphiphile incorporating a peptide sequence from lumican. Langmuir 31:4490–4495

    Article  CAS  PubMed  Google Scholar 

  130. Castelletto V, Kirkham S, Hamley IW, Kowalczyk R, Rabe M, Reza M, Ruokolainen J (2016) Self-assembly of the toll-like receptor agonist macrophage-activating lipopeptide MALP-2 and of its constituent peptide. Biomacromolecules 17:631–640

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by EPSRC Platform Grant reference EPSRC EP/L020599/1. We thank our collaborators for their vital contributions to several aspects of our ongoing research, especially in the fields of AFM imaging (Prof Raffaele Mezzenga and Dr. Jozef Adamcik, ETH Zürich) and cryo-TEM imaging (Prof Janne Ruokolainen and his team at Aalto University, Finland).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Castelletto or I. W. Hamley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Castelletto, V., Hamley, I.W. (2018). Methods to Characterize the Nanostructure and Molecular Organization of Amphiphilic Peptide Assemblies. In: Nilsson, B., Doran, T. (eds) Peptide Self-Assembly. Methods in Molecular Biology, vol 1777. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7811-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7811-3_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7809-0

  • Online ISBN: 978-1-4939-7811-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics