Skip to main content

Nanomanufacture of Free-Standing, Porous, Janus-Type Films of Polymer–Plant Virus Nanoparticle Arrays

Part of the Methods in Molecular Biology book series (MIMB,volume 1776)

Abstract

We present a facile method for preparing hierarchical assemblies of cowpea mosaic virus (CPMV) nanoparticles adsorbed onto patterned polypyrrole copolymer arrays, which can be released as a freely standing and microporous polymer–protein membrane with a Janus-type structure. The patterning protocol is based on colloidal sphere lithography wherein a sacrificial honeycomb pattern composed of colloidal polystyrene (PS) microspheres is assembled on an electrode. A thin layer of polypyrrole film is electropolymerized within the interstices of the template and monitored using an electrochemical quartz crystal microbalance with dissipation (EC-QCM-D) and microscopy. Dissolving the PS template reveals an inverse opaline pattern capable of electrostatically capturing the CPMV particles. Through an electrochemical trigger, the polypyrrole–CPMV delaminates from the surface producing a self-sustaining polymer–protein membrane that can potentially be used for sensing and nanocargo applications.

Key words

  • Hierarchical assembly
  • Conducting polymer
  • Colloidal lithography
  • Electropolymerization
  • Cowpea mosaic virus nanoparticles

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-7808-3_9
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7808-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lee KL, Shukla S, Wu M et al (2015) Stealth filaments: polymer chain length and conformation affect the in vivo fate of PEGylated potato virus X. Acta Biomater 19:166–179

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zang F, Gerasopoulos K, Fan XZ et al (2014) An electrochemical sensor for selective TNT sensing based on Tobacco mosaic virus-like particle binding agents. Chem Commun 50:12977–12980

    CrossRef  CAS  Google Scholar 

  3. Bruckman MA, Liu J, Koley G et al (2010) Tobacco mosaic virus based thin film sensor for detection of volatile organic compounds. J Mater Chem 20:5715–5719

    CrossRef  CAS  Google Scholar 

  4. Tiu BDB, Kernan DL, Tiu SB et al (2017) Electrostatic layer-by-layer construction of fibrous TMV biofilms. Nanoscale 9:1580–1590

    CrossRef  CAS  PubMed  Google Scholar 

  5. Nam KT, Kim D-W, Yoo PJ et al (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–888

    CrossRef  CAS  PubMed  Google Scholar 

  6. Dang X, Yi H, Ham M-H et al (2011) Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nat Nanotechnol 6:377–384

    CrossRef  CAS  PubMed  Google Scholar 

  7. Culver JN, Brown AD, Zang F et al (2015) Plant virus directed fabrication of nanoscale materials and devices. Virology 479–480:200–212

    CrossRef  CAS  PubMed  Google Scholar 

  8. de la Escosura A, Nolte RJM, Cornelissen JJLM (2009) Viruses and protein cages as nanocontainers and nanoreactors. J Mater Chem 19:2274–2278

    CrossRef  CAS  Google Scholar 

  9. Lu Y, Chan W, Ko BY et al (2015) Assessing sequence plasticity of a virus-like nanoparticle by evolution toward a versatile scaffold for vaccines and drug delivery. Proc Natl Acad Sci 112:12360–12365

    CrossRef  CAS  PubMed  Google Scholar 

  10. Bruckman MA, Randolph LN, Gulati NM et al (2015) Silica-coated Gd(DOTA)-loaded protein nanoparticles enable magnetic resonance imaging of macrophages. J Mater Chem B 3:7503–7510

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou Q, Wu F, Wu M et al (2015) Confined chromophores in tobacco mosaic virus to mimic green fluorescent protein. Chem Commun 51:15122–15124

    CrossRef  CAS  Google Scholar 

  12. Uhde-Holzem K, McBurney M, Tiu BDB et al (2016) Production of immunoabsorbent nanoparticles by displaying single-domain protein A on potato virus X. Macromol Biosci 16(2):231–241

    CrossRef  CAS  PubMed  Google Scholar 

  13. Aljabali AAA, Lomonossoff GP, Evans DJ (2011) CPMV-polyelectrolyte-templated gold nanoparticles. Biomacromolecules 12:2723–2728

    CrossRef  CAS  PubMed  Google Scholar 

  14. Courchesne N-MD, Klug MT, Chen P-Y et al (2014) Assembly of a bacteriophage-based template for the organization of materials into nanoporous networks. Adv Mater 26:3398–3404

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  15. Evans DJ (2008) The bionanoscience of plant viruses: templates and synthons for new materials. J Mater Chem 18:3746–3754

    CrossRef  CAS  Google Scholar 

  16. Barick KC, Bahadur D (2010) Self-assembly of colloidal nanoscale particles: fabrication, properties and applications. J Nanosci Nanotechnol 10:668–689

    CrossRef  CAS  PubMed  Google Scholar 

  17. Steinmetz NF, Findlay KC, Noel TR et al (2008) Layer-by-layer assembly of viral nanoparticles and polyelectrolytes: the film architecture is different for spheres versus rods. Chembiochem 9:1662–1670

    CrossRef  CAS  PubMed  Google Scholar 

  18. Lin Y, Su Z, Niu Z et al (2008) Layer-by-layer assembly of viral capsid for cell adhesion. Acta Biomater 4:838–843

    CrossRef  CAS  PubMed  Google Scholar 

  19. Wu Y, Feng S, Zan X et al (2015) Aligned electroactive TMV nanofibers as enabling scaffold for neural tissue engineering. Biomacromolecules 16:3466–3472

    CrossRef  CAS  PubMed  Google Scholar 

  20. Balci S, Leinberger DM, Knez M et al (2008) Printing and aligning mesoscale patterns of tobacco mosaic virus on surfaces. Adv Mater 20:2195–2200

    CrossRef  CAS  Google Scholar 

  21. Yoo SY, Chung W-J, Kim TH et al (2011) Facile patterning of genetically engineered M13 bacteriophage for directional growth of human fibroblast cells. Soft Matter 7:363–368

    CrossRef  CAS  Google Scholar 

  22. Yoo PJ, Nam KT, Belcher AM et al (2008) Solvent-assisted patterning of polyelectrolyte multilayers and selective deposition of virus assemblies. Nano Lett 8:1081–1089

    CrossRef  CAS  PubMed  Google Scholar 

  23. Yoo PJ, Nam KT, Qi J et al (2006) Spontaneous assembly of viruses on multilayered polymer surfaces. Nat Mater 5:234–240

    CrossRef  CAS  PubMed  Google Scholar 

  24. Cheung CL, Camarero JA, Woods BW et al (2003) Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. J Am Chem Soc 125:6848–6849

    CrossRef  CAS  PubMed  Google Scholar 

  25. Vega RA, Maspoch D, Salaita K et al (2005) Nanoarrays of single virus particles. Angew Chem 117:6167–6169

    CrossRef  Google Scholar 

  26. Yi H, Rubloff GW, Culver JN (2007) TMV microarrays: hybridization-based assembly of DNA-programmed viral nanotemplates. Langmuir 23:2663–2667

    CrossRef  CAS  PubMed  Google Scholar 

  27. Yi H, Nisar S, Lee S-Y et al (2005) Patterned assembly of genetically modified viral nanotemplates via nucleic acid hybridization. Nano Lett 5:1931–1936

    CrossRef  CAS  PubMed  Google Scholar 

  28. Tiu BDB, Tiu SB, Wen AM et al (2016) Free-standing, nanopatterned Janus membranes of conducting polymer–virus nanoparticle arrays. Langmuir 32:6185–6193

    CrossRef  CAS  PubMed  Google Scholar 

  29. Lin T, Chen Z, Usha R et al (1999) The refined crystal structure of cowpea mosaic virus at 2.8 Å resolution. Virology 265:20–34

    CrossRef  CAS  PubMed  Google Scholar 

  30. Marquez M, Grady BP (2004) The use of surface tension to predict the formation of 2D arrays of latex spheres formed via the langmuir−blodgett-like technique. Langmuir 20:10998–11004

    CrossRef  CAS  PubMed  Google Scholar 

  31. Tiu BDB, Pernites RB, Foster EL et al (2015) Conducting polymer-gold co-patterned surfaces via nanosphere lithography. J Colloid Interface Sci 459:86

    CrossRef  CAS  PubMed  Google Scholar 

  32. Pyo M, Bohn CC, Smela E et al (2003) Direct strain measurement of polypyrrole actuators controlled by the polymer/gold interface. Chem Mater 15:916–922

    CrossRef  CAS  Google Scholar 

  33. Kaneto K, Sonoda Y, Takashima W (2000) Direct measurement and mechanism of electro-chemomechanical expansion and contraction in polypyrrole films. Jpn J Appl Phys 39:5918

    CrossRef  CAS  Google Scholar 

  34. Cho CF, Sourabh S, Simpson EJ et al (2014) Molecular targeted viral nanoparticles as tools for imaging cancer. Methods Mol Biol (Clifton, NJ) 1108:211–230

    CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation (CMMI NM 1333651 to NFS and RCA and STC-0423914 to RCA). Case Farm is acknowledged for scaled-up plant production. The authors also acknowledge technical support from Biolin Scientific Inc. and the Materials for Opto/Electronics Research and Education (MORE) Center at the Case Western Reserve University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rigoberto C. Advincula or Nicole F. Steinmetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Tiu, B.D.B., Advincula, R.C., Steinmetz, N.F. (2018). Nanomanufacture of Free-Standing, Porous, Janus-Type Films of Polymer–Plant Virus Nanoparticle Arrays. In: Wege, C., Lomonossoff, G. (eds) Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, vol 1776. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7808-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7808-3_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7806-9

  • Online ISBN: 978-1-4939-7808-3

  • eBook Packages: Springer Protocols