Morikawa S, Booth TF, Bishop DH (1991) Analyses of the requirements for the synthesis of virus-like particles by feline immunodeficiency virus gag using baculovirus vectors. Virology 183(1):288–297
CrossRef
CAS
PubMed
Google Scholar
Kost TA, Condreay JP, Jarvis DL (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23(5):567–575. https://doi.org/10.1038/nbt1095
CrossRef
PubMed
PubMed Central
CAS
Google Scholar
Luckow VA, Lee SC, Barry GF, Olins PO (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67(8):4566–4579
PubMed
PubMed Central
CAS
Google Scholar
Felberbaum RS (2015) The baculovirus expression vector system: a commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol J 10(5):702–714
CrossRef
CAS
PubMed
Google Scholar
Harper DM, Franco EL, Wheeler C, Ferris DG, Jenkins D, Schuind A, Zahaf T, Innis B, Naud P, De Carvalho NS, Roteli-Martins CM, Teixeira J, Blatter MM, Korn AP, Quint W, Dubin G, GlaxoSmithKline HPV Vaccine Study Group (2004) Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet 364(9447):1757–1765. https://doi.org/10.1016/S0140-6736(04)17398-4
CrossRef
PubMed
CAS
Google Scholar
Glenn GM, Smith G, Fries L, Raghunandan R, Lu H, Zhou B, Thomas DN, Hickman SP, Kpamegan E, Boddapati S, Piedra PA (2013) Safety and immunogenicity of a Sf9 insect cell-derived respiratory syncytial virus fusion protein nanoparticle vaccine. Vaccine 31(3):524–532. https://doi.org/10.1016/j.vaccine.2012.11.009
CrossRef
PubMed
CAS
Google Scholar
Treanor JJ, Atmar RL, Frey SE, Gormley R, Chen WH, Ferreira J, Goodwin R, Borkowski A, Clemens R, Mendelman PM (2014) A novel intramuscular bivalent norovirus virus-like particle vaccine candidate--reactogenicity, safety, and immunogenicity in a phase 1 trial in healthy adults. J Infect Dis 210(11):1763–1771. https://doi.org/10.1093/infdis/jiu337
CrossRef
PubMed
CAS
Google Scholar
Pijlman GP, van Schijndel JE, Vlak JM (2003) Spontaneous excision of BAC vector sequences from bacmid-derived baculovirus expression vectors upon passage in insect cells. J Gen Virol 84(Pt 10):2669–2678. https://doi.org/10.1099/vir.0.19438-0
CrossRef
PubMed
CAS
Google Scholar
Hitchman RB, Possee RD, King LA (2012) High-throughput baculovirus expression in insect cells. Methods Mol Biol 824:609–627. https://doi.org/10.1007/978-1-61779-433-9_33
CrossRef
PubMed
CAS
Google Scholar
Senger T, Schadlich L, Gissmann L, Muller M (2009) Enhanced papillomavirus-like particle production in insect cells. Virology 388(2):344–353. https://doi.org/10.1016/j.virol.2009.04.004
CrossRef
PubMed
CAS
Google Scholar
Kanai Y, Athmaram TN, Stewart M, Roy P (2013) Multiple large foreign protein expression by a single recombinant baculovirus: a system for production of multivalent vaccines. Protein Expr Purif 91(1):77–84. https://doi.org/10.1016/j.pep.2013.07.005
CrossRef
PubMed
CAS
Google Scholar
Noad RJ, Stewart M, Boyce M, Celma CC, Willison KR, Roy P (2009) Multigene expression of protein complexes by iterative modification of genomic Bacmid DNA. BMC Mol Biol 10:87. https://doi.org/10.1186/1471-2199-10-87
CrossRef
PubMed
PubMed Central
CAS
Google Scholar
Schneemann A, Dasgupta R, Johnson JE, Rueckert RR (1993) Use of recombinant baculoviruses in synthesis of morphologically distinct viruslike particles of flock house virus, a nodavirus. J Virol 67(5):2756–2763
PubMed
PubMed Central
CAS
Google Scholar
Dong XF, Natarajan P, Tihova M, Johnson JE, Schneemann A (1998) Particle polymorphism caused by deletion of a peptide molecular switch in a quasiequivalent icosahedral virus. J Virol 72(7):6024–6033
PubMed
PubMed Central
CAS
Google Scholar
Tihova M, Dryden KA, Le TV, Harvey SC, Johnson JE, Yeager M, Schneemann A (2004) Nodavirus coat protein imposes dodecahedral RNA structure independent of nucleotide sequence and length. J Virol 78(6):2897–2905
CrossRef
CAS
PubMed
PubMed Central
Google Scholar
Johnson KN, Tang L, Johnson JE, Ball LA (2004) Heterologous RNA encapsidated in Pariacoto virus-like particles forms a dodecahedral cage similar to genomic RNA in wild-type virions. J Virol 78(20):11371–11378. https://doi.org/10.1128/JVI.78.20.11371-11378.2004
CrossRef
PubMed
PubMed Central
CAS
Google Scholar
Krishna NK, Marshall D, Schneemann A (2003) Analysis of RNA packaging in wild-type and mosaic protein capsids of flock house virus using recombinant baculovirus vectors. Virology 305(1):10–24
CrossRef
CAS
PubMed
Google Scholar
Venter PA, Krishna NK, Schneemann A (2005) Capsid protein synthesis from replicating RNA directs specific packaging of the genome of a multipartite, positive-strand RNA virus. J Virol 79(10):6239–6248. https://doi.org/10.1128/JVI.79.10.6239-6248.2005
CrossRef
PubMed
PubMed Central
CAS
Google Scholar
Venter PA, Schneemann A (2007) Assembly of two independent populations of flock house virus particles with distinct RNA packaging characteristics in the same cell. J Virol 81(2):613–619. https://doi.org/10.1128/JVI.01668-06
CrossRef
PubMed
CAS
Google Scholar
Taylor DJ, Johnson JE (2005) Folding and particle assembly are disrupted by single-point mutations near the autocatalytic cleavage site of Nudaurelia capensis omega virus capsid protein. Protein Sci 14(2):401–408. https://doi.org/10.1110/ps.041054605
CrossRef
PubMed
PubMed Central
CAS
Google Scholar
Pringle FM, Kalmakoff J, Ward VK (2001) Analysis of the capsid processing strategy of Thosea asigna virus using baculovirus expression of virus-like particles. J Gen Virol 82(Pt 1):259–266. https://doi.org/10.1099/0022-1317-82-1-259
CrossRef
PubMed
CAS
Google Scholar
Tomasicchio M, Venter PA, Gordon KH, Hanzlik TN, Dorrington RA (2007) Induction of apoptosis in Saccharomyces cerevisiae results in the spontaneous maturation of tetravirus procapsids in vivo. J Gen Virol 88(Pt 5):1576–1582. https://doi.org/10.1099/vir.0.82250-0
CrossRef
PubMed
CAS
Google Scholar
Croizier L, Jousset FX, Veyrunes JC, Lopez-Ferber M, Bergoin M, Croizier G (2000) Protein requirements for assembly of virus-like particles of Junonia coenia densovirus in insect cells. J Gen Virol 81(Pt 6):1605–1613. https://doi.org/10.1099/0022-1317-81-6-1605
CrossRef
PubMed
CAS
Google Scholar
Chakrabarti M, Ghorai S, Mani SK, Ghosh AK (2010) Molecular characterization of genome segments 1 and 3 encoding two capsid proteins of Antheraea mylitta cytoplasmic polyhedrosis virus. Virol J 7:181. https://doi.org/10.1186/1743-422X-7-181
CrossRef
PubMed
PubMed Central
CAS
Google Scholar
Sanchez-Eugenia R, Mendez F, Querido JF, Silva MS, Guerin DM, Rodriguez JF (2015) Triatoma virus structural polyprotein expression, processing and assembly into virus-like particles. J Gen Virol 96(Pt 1):64–73. https://doi.org/10.1099/vir.0.071639-0
CrossRef
PubMed
CAS
Google Scholar
Scodeller EA, Tisminetzky SG, Porro F, Schiappacassi M, De Rossi A, Chiecco-Bianchi L, Baralle FE (1995) A new epitope presenting system displays a HIV-1 V3 loop sequence and induces neutralizing antibodies. Vaccine 13(13):1233–1239
CrossRef
CAS
PubMed
Google Scholar
Manayani DJ, Thomas D, Dryden KA, Reddy V, Siladi ME, Marlett JM, Rainey GJ, Pique ME, Scobie HM, Yeager M, Young JA, Manchester M, Schneemann A (2007) A viral nanoparticle with dual function as an anthrax antitoxin and vaccine. PLoS Pathog 3(10):1422–1431. https://doi.org/10.1371/journal.ppat.0030142
CrossRef
PubMed
CAS
Google Scholar
Schneemann A, Speir JA, Tan GS, Khayat R, Ekiert DC, Matsuoka Y, Wilson IA (2012) A virus-like particle that elicits cross-reactive antibodies to the conserved stem of influenza virus hemagglutinin. J Virol 86(21):11686–11697. https://doi.org/10.1128/JVI.01694-12
CrossRef
PubMed
PubMed Central
CAS
Google Scholar
Krammer F, Schinko T, Palmberger D, Tauer C, Messner P, Grabherr R (2010) Trichoplusia ni cells (High Five) are highly efficient for the production of influenza A virus-like particles: a comparison of two insect cell lines as production platforms for influenza vaccines. Mol Biotechnol 45(3):226–234. https://doi.org/10.1007/s12033-010-9268-3
CrossRef
PubMed
PubMed Central
CAS
Google Scholar