Skip to main content

Production and Application of Insect Virus-Based VLPs

  • Protocol
  • First Online:
Virus-Derived Nanoparticles for Advanced Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1776))

Abstract

Virus-like particles (VLPs) are self-assembling platforms composed of viral structural proteins. They are used for a variety of purposes, ranging from the study of virus assembly to vaccine development. VLPs can be produced in plants, bacteria, yeast, and insect and mammalian cells. The baculovirus expression system is one of the most commonly used systems for production of VLPs in eukaryotic cells. This chapter provides a brief overview of the main strategies used to generate recombinant baculoviruses and the applications of insect virus-derived VLPs in basic and applied research. It then describes detailed protocols for generation of recombinant baculoviruses, screening for their expression of VLPs in insect cells, and VLP purification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morikawa S, Booth TF, Bishop DH (1991) Analyses of the requirements for the synthesis of virus-like particles by feline immunodeficiency virus gag using baculovirus vectors. Virology 183(1):288–297

    Article  CAS  PubMed  Google Scholar 

  2. Kost TA, Condreay JP, Jarvis DL (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23(5):567–575. https://doi.org/10.1038/nbt1095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Luckow VA, Lee SC, Barry GF, Olins PO (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67(8):4566–4579

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Felberbaum RS (2015) The baculovirus expression vector system: a commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol J 10(5):702–714

    Article  CAS  PubMed  Google Scholar 

  5. Harper DM, Franco EL, Wheeler C, Ferris DG, Jenkins D, Schuind A, Zahaf T, Innis B, Naud P, De Carvalho NS, Roteli-Martins CM, Teixeira J, Blatter MM, Korn AP, Quint W, Dubin G, GlaxoSmithKline HPV Vaccine Study Group (2004) Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet 364(9447):1757–1765. https://doi.org/10.1016/S0140-6736(04)17398-4

    Article  PubMed  CAS  Google Scholar 

  6. Glenn GM, Smith G, Fries L, Raghunandan R, Lu H, Zhou B, Thomas DN, Hickman SP, Kpamegan E, Boddapati S, Piedra PA (2013) Safety and immunogenicity of a Sf9 insect cell-derived respiratory syncytial virus fusion protein nanoparticle vaccine. Vaccine 31(3):524–532. https://doi.org/10.1016/j.vaccine.2012.11.009

    Article  PubMed  CAS  Google Scholar 

  7. Treanor JJ, Atmar RL, Frey SE, Gormley R, Chen WH, Ferreira J, Goodwin R, Borkowski A, Clemens R, Mendelman PM (2014) A novel intramuscular bivalent norovirus virus-like particle vaccine candidate--reactogenicity, safety, and immunogenicity in a phase 1 trial in healthy adults. J Infect Dis 210(11):1763–1771. https://doi.org/10.1093/infdis/jiu337

    Article  PubMed  CAS  Google Scholar 

  8. Pijlman GP, van Schijndel JE, Vlak JM (2003) Spontaneous excision of BAC vector sequences from bacmid-derived baculovirus expression vectors upon passage in insect cells. J Gen Virol 84(Pt 10):2669–2678. https://doi.org/10.1099/vir.0.19438-0

    Article  PubMed  CAS  Google Scholar 

  9. Hitchman RB, Possee RD, King LA (2012) High-throughput baculovirus expression in insect cells. Methods Mol Biol 824:609–627. https://doi.org/10.1007/978-1-61779-433-9_33

    Article  PubMed  CAS  Google Scholar 

  10. Senger T, Schadlich L, Gissmann L, Muller M (2009) Enhanced papillomavirus-like particle production in insect cells. Virology 388(2):344–353. https://doi.org/10.1016/j.virol.2009.04.004

    Article  PubMed  CAS  Google Scholar 

  11. Kanai Y, Athmaram TN, Stewart M, Roy P (2013) Multiple large foreign protein expression by a single recombinant baculovirus: a system for production of multivalent vaccines. Protein Expr Purif 91(1):77–84. https://doi.org/10.1016/j.pep.2013.07.005

    Article  PubMed  CAS  Google Scholar 

  12. Noad RJ, Stewart M, Boyce M, Celma CC, Willison KR, Roy P (2009) Multigene expression of protein complexes by iterative modification of genomic Bacmid DNA. BMC Mol Biol 10:87. https://doi.org/10.1186/1471-2199-10-87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Schneemann A, Dasgupta R, Johnson JE, Rueckert RR (1993) Use of recombinant baculoviruses in synthesis of morphologically distinct viruslike particles of flock house virus, a nodavirus. J Virol 67(5):2756–2763

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Dong XF, Natarajan P, Tihova M, Johnson JE, Schneemann A (1998) Particle polymorphism caused by deletion of a peptide molecular switch in a quasiequivalent icosahedral virus. J Virol 72(7):6024–6033

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Tihova M, Dryden KA, Le TV, Harvey SC, Johnson JE, Yeager M, Schneemann A (2004) Nodavirus coat protein imposes dodecahedral RNA structure independent of nucleotide sequence and length. J Virol 78(6):2897–2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnson KN, Tang L, Johnson JE, Ball LA (2004) Heterologous RNA encapsidated in Pariacoto virus-like particles forms a dodecahedral cage similar to genomic RNA in wild-type virions. J Virol 78(20):11371–11378. https://doi.org/10.1128/JVI.78.20.11371-11378.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Krishna NK, Marshall D, Schneemann A (2003) Analysis of RNA packaging in wild-type and mosaic protein capsids of flock house virus using recombinant baculovirus vectors. Virology 305(1):10–24

    Article  CAS  PubMed  Google Scholar 

  18. Venter PA, Krishna NK, Schneemann A (2005) Capsid protein synthesis from replicating RNA directs specific packaging of the genome of a multipartite, positive-strand RNA virus. J Virol 79(10):6239–6248. https://doi.org/10.1128/JVI.79.10.6239-6248.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Venter PA, Schneemann A (2007) Assembly of two independent populations of flock house virus particles with distinct RNA packaging characteristics in the same cell. J Virol 81(2):613–619. https://doi.org/10.1128/JVI.01668-06

    Article  PubMed  CAS  Google Scholar 

  20. Taylor DJ, Johnson JE (2005) Folding and particle assembly are disrupted by single-point mutations near the autocatalytic cleavage site of Nudaurelia capensis omega virus capsid protein. Protein Sci 14(2):401–408. https://doi.org/10.1110/ps.041054605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Pringle FM, Kalmakoff J, Ward VK (2001) Analysis of the capsid processing strategy of Thosea asigna virus using baculovirus expression of virus-like particles. J Gen Virol 82(Pt 1):259–266. https://doi.org/10.1099/0022-1317-82-1-259

    Article  PubMed  CAS  Google Scholar 

  22. Tomasicchio M, Venter PA, Gordon KH, Hanzlik TN, Dorrington RA (2007) Induction of apoptosis in Saccharomyces cerevisiae results in the spontaneous maturation of tetravirus procapsids in vivo. J Gen Virol 88(Pt 5):1576–1582. https://doi.org/10.1099/vir.0.82250-0

    Article  PubMed  CAS  Google Scholar 

  23. Croizier L, Jousset FX, Veyrunes JC, Lopez-Ferber M, Bergoin M, Croizier G (2000) Protein requirements for assembly of virus-like particles of Junonia coenia densovirus in insect cells. J Gen Virol 81(Pt 6):1605–1613. https://doi.org/10.1099/0022-1317-81-6-1605

    Article  PubMed  CAS  Google Scholar 

  24. Chakrabarti M, Ghorai S, Mani SK, Ghosh AK (2010) Molecular characterization of genome segments 1 and 3 encoding two capsid proteins of Antheraea mylitta cytoplasmic polyhedrosis virus. Virol J 7:181. https://doi.org/10.1186/1743-422X-7-181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sanchez-Eugenia R, Mendez F, Querido JF, Silva MS, Guerin DM, Rodriguez JF (2015) Triatoma virus structural polyprotein expression, processing and assembly into virus-like particles. J Gen Virol 96(Pt 1):64–73. https://doi.org/10.1099/vir.0.071639-0

    Article  PubMed  CAS  Google Scholar 

  26. Scodeller EA, Tisminetzky SG, Porro F, Schiappacassi M, De Rossi A, Chiecco-Bianchi L, Baralle FE (1995) A new epitope presenting system displays a HIV-1 V3 loop sequence and induces neutralizing antibodies. Vaccine 13(13):1233–1239

    Article  CAS  PubMed  Google Scholar 

  27. Manayani DJ, Thomas D, Dryden KA, Reddy V, Siladi ME, Marlett JM, Rainey GJ, Pique ME, Scobie HM, Yeager M, Young JA, Manchester M, Schneemann A (2007) A viral nanoparticle with dual function as an anthrax antitoxin and vaccine. PLoS Pathog 3(10):1422–1431. https://doi.org/10.1371/journal.ppat.0030142

    Article  PubMed  CAS  Google Scholar 

  28. Schneemann A, Speir JA, Tan GS, Khayat R, Ekiert DC, Matsuoka Y, Wilson IA (2012) A virus-like particle that elicits cross-reactive antibodies to the conserved stem of influenza virus hemagglutinin. J Virol 86(21):11686–11697. https://doi.org/10.1128/JVI.01694-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Krammer F, Schinko T, Palmberger D, Tauer C, Messner P, Grabherr R (2010) Trichoplusia ni cells (High Five) are highly efficient for the production of influenza A virus-like particles: a comparison of two insect cell lines as production platforms for influenza vaccines. Mol Biotechnol 45(3):226–234. https://doi.org/10.1007/s12033-010-9268-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH grant AI109081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anette Schneemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gopal, R., Schneemann, A. (2018). Production and Application of Insect Virus-Based VLPs. In: Wege, C., Lomonossoff, G. (eds) Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, vol 1776. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7808-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7808-3_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7806-9

  • Online ISBN: 978-1-4939-7808-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics