Skip to main content

Self-Assembling Plant-Derived Vaccines Against Papillomaviruses

  • Protocol
  • First Online:
Book cover Virus-Derived Nanoparticles for Advanced Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1776))

Abstract

Virus-like particles (VLPs) can be used as antiviral vaccines as they mimic the structure of virus particles, with preserved conformation and immunogenicity characteristics. L1, the major capsid protein of papillomaviruses (PV) can self-assemble into VLPs currently used as highly effective vaccines. VLPs can be produced in heterologous systems, including plants. Here, a method for the expression of the L1 protein of human papillomavirus 16 (HPV 16) and the production of highly purified preparations of HPV 16 L1 VLPs is described. The method relies on the transient expression of HPV 16 L1 in Nicotiana benthamiana plants using a nonreplicating vector and on the purification of VLPs by different centrifugation steps followed by a cesium sulfate gradient. Such a procedure has also been successfully applied to other HPVs and to bovine papillomavirus 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang JW, Roden RB (2013) Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert Rev Vaccines 12:129–141

    Article  CAS  PubMed  Google Scholar 

  2. Buck CB, Cheng N, Thompson CD, Lowy DR, Steven AC, Schiller JT, Trus BL (2008) Arrangement of L2 within the papillomavirus capsid. J Virol 82:5190–5197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baker TS, Newcomb WW, Olson NH, Cowsert LM, Olson C, Brown JC (1991) Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys J 60:1445–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen X, Garcea R, Goldberg I, Casini G, Harrison SC (2000) Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell 5:557–567

    Article  CAS  PubMed  Google Scholar 

  5. Buck CB, Trus BL (2012) The papillomavirus virion: a machine built to hide molecular Achilles’ heels. Adv Exp Med Biol 726:403–422

    Article  CAS  PubMed  Google Scholar 

  6. McKee SJ, Bergot AS, Leggatt GR (2015) Recent progress in vaccination against human papillomavirus-mediated cervical cancer. Rev Med Virol 1:54–71

    Article  CAS  Google Scholar 

  7. Sohn U, Nam HG, Park DH, Kim KH (2002) Recombinant human papillomavirus vaccine expressed in transgenic plants. US patent 6,444,805

    Google Scholar 

  8. Varsani A, Williamson AL, Rose RC, Jaffer M, Rybicki EP (2003) Expression of human papillomavirus type 16 major capsid protein in transgenic Nicotiana tabacum cv. Xanthi. Arch Virol 148:1771–1786

    Article  CAS  PubMed  Google Scholar 

  9. Biemelt S, Sonnewald U, Galmbacher P, Willmitzer L, Müller M (2003) Production of human papillomavirus type 16 virus-like particles in transgenic plants. J Virol 77:9211–9220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maclean J, Koekemoer M, Olivier AJ, Stewart D, Hitzeroth II, Rademacher T, Fischer R, Williamson AL, Rybicki EP (2007) Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell compartment localization. J Gen Virol 88:1460–1469

    Article  CAS  PubMed  Google Scholar 

  11. Regnard GL, Halley-Stott RP, Tanzer FL, Hitzeroth II, Rybicki EP (2010) High level protein expression in plants through the use of a novel autonomously replicating geminivirus shuttle vector. Plant Biotechnol J 8:38–46

    Article  CAS  PubMed  Google Scholar 

  12. Fernández-San Millán A, Ortigosa SM, Hervás-Stubbs S, Corral-Martínez P, Seguí-Simarro JM, Gaétan J, Coursaget P, Veramendi J (2008) Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. Plant Biotechnol J 6:427–441

    Article  CAS  PubMed  Google Scholar 

  13. Shirbaghaee Z, Bolhassani A (2015) Different applications of virus-like particles in biology and medicine:vaccination and delivery systems. Biopolymers 105:113–132

    Article  CAS  Google Scholar 

  14. Sainsbury F, Thuenemann EC, Lomonossoff GP (2009) pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J 7:682–693

    Article  CAS  PubMed  Google Scholar 

  15. Christensen ND, Dillner J, Eklund C, Carter JJ, Wipf GC, Reed CA, Cladel NM, Galloway DA (1996) Surface conformational and linear epitopes on HPV-16 and HPV-18 L1 virus-like particles as defined by monoclonal antibodies. Virology 223:174–184

    Article  CAS  PubMed  Google Scholar 

  16. Matić S, Rinaldi R, Masenga V, Noris E (2011) Efficient production of chimeric human papillomavirus 16 L1 protein bearing the M2e influenza epitope in Nicotiana benthamiana plants. BMC Biotechnol 11:106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matić S, Masenga V, Poli A, Rinaldi R, Milne RG, Vecchiati M, Noris E (2012) Comparative analysis of recombinant human papillomavirus 8 L1 production in plants by a variety of expression systems and purification methods. Plant Biotechnol J 10:410–421

    Article  CAS  PubMed  Google Scholar 

  18. Love AJ, Chapman SN, Matic S, Noris E, Lomonossoff GP, Taliansky M (2012) In planta production of a candidate vaccine against bovine papillomavirus type 1. Planta 236:1305–1313

    Article  CAS  PubMed  Google Scholar 

  19. Thuenemann EC, Lenzi P, Love AJ, Taliansky M, Bécares M, Zuñiga S, Enjuanes L, Zahmanova GG, Minkov IN, Matić S, Noris E, Meyers A, Hattingh A, Rybicki EP, Kiselev OI, Ravin NV, Eldarov MA, Skryabin KG, Lomonossoff GP (2013) The use of transient expression systems for the rapid production of virus-like particles in plants. Curr Pharm Des 19:5564–5573

    Article  CAS  PubMed  Google Scholar 

  20. Peyret H, Lomonossoff GP (2015) When plant virology met agrobacterium: the rise of the deconstructed clones. Plant Biotechnol J 13:1121–1135

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela Noris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Noris, E. (2018). Self-Assembling Plant-Derived Vaccines Against Papillomaviruses. In: Wege, C., Lomonossoff, G. (eds) Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, vol 1776. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7808-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7808-3_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7806-9

  • Online ISBN: 978-1-4939-7808-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics