Skip to main content

In Planta Production of Fluorescent Filamentous Plant Virus-Based Nanoparticles

Part of the Methods in Molecular Biology book series (MIMB,volume 1776)

Abstract

Viral nanoparticles are attractive platforms for biomedical applications and are frequently employed for optical imaging in tissue culture and preclinical animal models as fluorescent probes. Chemical modification with organic dyes remains the most common strategy to develop such fluorescent probes. Here we report a genetic engineering approach to incorporate fluorescent proteins in viral nanoparticles, which can be propagated in their plant host. The fluorescent viral nanoparticles so obtained obviate post-harvest modifications and thereby maximize yields. Our engineering approach transforms filamentous potato virus X (PVX) to display green fluorescent protein (GFP) or mCherry as N-terminal coat protein (CP) fusions at a 1:3 fusion protein to CP ratio through integration of the foot-and-mouth disease 2A sequence. The in planta propagation of recombinant GFP-PVX or mCherry-PVX thus produced in Nicotiana benthamiana can be easily documented using fluorescence imaging. Molecular farming protocols can be accordingly optimized by monitoring chimera stability over the course of the infection cycle. Moreover, we also demonstrate the utility of recombinant mCherry-PVX in optical imaging of human cancer cells and tumor tissue in preclinical mice model. Together, these features make genetically engineered fluorescent PVX particles ideally suited for molecular imaging applications.

Key words

  • Viral nanoparticles
  • Potato virus X
  • Genetic engineering
  • Ribosome skip
  • FMDV 2A sequence
  • mCherry
  • Tumor homing

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-7808-3_5
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7808-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pokorski JK, Steinmetz NF (2011) The art of engineering viral nanoparticles. Mol Pharm 8(1):29–43. https://doi.org/10.1021/mp100225y

    CrossRef  PubMed  CAS  Google Scholar 

  2. Steinmetz NF (2010) Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. Nanomedicine 6(5):634–641. https://doi.org/10.1016/j.nano.2010.04.005

    CrossRef  PubMed  CAS  Google Scholar 

  3. Yusibov V, Rabindran S, Commandeur U, Twyman RM, Fischer R (2006) The potential of plant virus vectors for vaccine production. Drugs R D 7(4):203–217

    CrossRef  CAS  PubMed  Google Scholar 

  4. Steinmetz NF, Manchester M (2011) Viral nanoparticles: tools for materials science and biomedicine. Pan Stanford Publishing Pte. Ltd, Singapore, pp 1–273

    Google Scholar 

  5. Plummer EM, Manchester M (2010) Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(2):174–196. https://doi.org/10.1002/wnan.119

    CrossRef  PubMed  CAS  PubMed Central  Google Scholar 

  6. Jobsri J, Allen A, Rajagopal D, Shipton M, Kanyuka K, Lomonossoff GP, Ottensmeier C, Diebold SS, Stevenson FK, Savelyeva N (2015) Plant virus particles carrying tumour antigen activate TLR7 and induce high levels of protective antibody. PLoS One 10(2):e0118096. https://doi.org/10.1371/journal.pone.0118096

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  7. Lizotte PH, Wen AM, Sheen MR, Fields J, Rojanasopondist P, Steinmetz NF, Fiering S (2015) In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat Nanotechnol 11(3):295–303. https://doi.org/10.1038/nnano.2015.292

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bruckman MA, Jiang K, Simpson EJ, Randolph LN, Luyt LG, Yu X, Steinmetz NF (2014) Dual-modal magnetic resonance and fluorescence imaging of atherosclerotic plaques in vivo using VCAM-1 targeted tobacco mosaic virus. Nano Lett 14(3):1551–1558. https://doi.org/10.1021/nl404816m

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lee KL, Uhde-Holzem K, Fischer R, Commandeur U, Steinmetz NF (2014) Genetic engineering and chemical conjugation of potato virus X. Methods Mol Biol 1108:3–21. https://doi.org/10.1007/978-1-62703-751-8_1

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  10. Maclean J, Koekemoer M, Olivier AJ, Stewart D, Hitzeroth II, Rademacher T, Fischer R, Williamson AL, Rybicki EP (2007) Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. J Gen Virol 88(Pt 5):1460–1469. https://doi.org/10.1099/vir.0.82718-0

    CrossRef  PubMed  CAS  Google Scholar 

  11. McCormick AA, Palmer KE (2008) Genetically engineered tobacco mosaic virus as nanoparticle vaccines. Expert Rev Vaccines 7(1):33–41. https://doi.org/10.1586/14760584.7.1.33

    CrossRef  PubMed  CAS  Google Scholar 

  12. Shukla S, Eber FJ, Nagarajan AS, DiFranco NA, Schmidt N, Wen AM, Eiben S, Twyman RM, Wege C, Steinmetz NF (2015) The impact of aspect ratio on the biodistribution and tumor homing of rigid soft-matter nanorods. Adv Healthc Mater 4(6):874–882. https://doi.org/10.1002/adhm.201400641

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  13. Canizares MC, Lomonossoff GP, Nicholson L (2005) Development of cowpea mosaic virus-based vectors for the production of vaccines in plants. Expert Rev Vaccines 4(5):687–697. https://doi.org/10.1586/14760584.4.5.687

    CrossRef  PubMed  CAS  Google Scholar 

  14. Canizares MC, Nicholson L, Lomonossoff GP (2005) Use of viral vectors for vaccine production in plants. Immunol Cell Biol 83(3):263–270. https://doi.org/10.1111/j.1440-1711.2005.01339.x

    CrossRef  PubMed  CAS  PubMed Central  Google Scholar 

  15. Steinmetz NF, Mertens ME, Taurog RE, Johnson JE, Commandeur U, Fischer R, Manchester M (2010) Potato virus X as a novel platform for potential biomedical applications. Nano Lett 10(1):305–312. https://doi.org/10.1021/nl9035753

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  16. Shukla S, Wen AM, Ayat NR, Commandeur U, Gopalkrishnan R, Broome AM, Lozada KW, Keri RA, Steinmetz NF (2014) Biodistribution and clearance of a filamentous plant virus in healthy and tumor-bearing mice. Nanomedicine (Lond) 9(2):221–235. https://doi.org/10.2217/nnm.13.75

    CrossRef  CAS  Google Scholar 

  17. Lee KL, Shukla S, Wu M, Ayat NR, El Sanadi CE, Wen AM, Edelbrock JF, Pokorski JK, Commandeur U, Dubyak GR, Steinmetz NF (2015) Stealth filaments: polymer chain length and conformation affect the in vivo fate of PEGylated potato virus X. Acta Biomater 19:166–179. https://doi.org/10.1016/j.actbio.2015.03.001

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  18. Uhde-Holzem K, Schlosser V, Viazov S, Fischer R, Commandeur U (2010) Immunogenic properties of chimeric potato virus X particles displaying the hepatitis C virus hypervariable region I peptide R9. J Virol Methods 166(1-2):12–20. https://doi.org/10.1016/j.jviromet.2010.01.017

    CrossRef  PubMed  CAS  Google Scholar 

  19. Shukla S, Wen AM, Commandeur U, Steinmetz NF (2014) Presentation of HER2 epitopes using a filamentous plant virus-based vaccination platform. J Mater Chem B 2(37):6249–6258. https://doi.org/10.1039/c4tb00749b

    CrossRef  CAS  PubMed  Google Scholar 

  20. Lico C, Benvenuto E, Baschieri S (2015) The two-faced potato virus X: from plant pathogen to smart nanoparticle. Front Plant Sci 6:1009. https://doi.org/10.3389/fpls.2015.01009

    CrossRef  PubMed  PubMed Central  Google Scholar 

  21. Shukla S, DiFranco NA, Wen AM, Commandeur U, Steinmetz NF (2015) To target or not to target: active vs. passive tumor homing of filamentous nanoparticles based on potato virus X. Cell Mol Bioeng 8(3):433–444. https://doi.org/10.1007/s12195-015-0388-5

    CrossRef  PubMed  CAS  Google Scholar 

  22. Marusic C, Rizza P, Lattanzi L, Mancini C, Spada M, Belardelli F, Benvenuto E, Capone I (2001) Chimeric plant virus particles as immunogens for inducing murine and human immune responses against human immunodeficiency virus type 1. J Virol 75(18):8434–8439

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brennan FR, Jones TD, Longstaff M, Chapman S, Bellaby T, Smith H, Xu F, Hamilton WD, Flock JI (1999) Immunogenicity of peptides derived from a fibronectin-binding protein of S. Aureus expressed on two different plant viruses. Vaccine 17(15-16):1846–1857

    CrossRef  CAS  PubMed  Google Scholar 

  24. Massa S, Simeone P, Muller A, Benvenuto E, Venuti A, Franconi R (2008) Antitumor activity of DNA vaccines based on the human papillomavirus-16 E7 protein genetically fused to a plant virus coat protein. Hum Gene Ther 19(4):354–364. https://doi.org/10.1089/hum.2007.122

    CrossRef  PubMed  CAS  Google Scholar 

  25. Cruz SS, Chapman S, Roberts AG, Roberts IM, Prior DA, Oparka KJ (1996) Assembly and movement of a plant virus carrying a green fluorescent protein overcoat. Proc Natl Acad Sci U S A 93(13):6286–6290

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  26. Donnelly ML, Luke G, Mehrotra A, Li X, Hughes LE, Gani D, Ryan MD (2001) Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip. J Gen Virol 82(Pt 5):1013–1025. https://doi.org/10.1099/0022-1317-82-5-1013

    CrossRef  PubMed  CAS  Google Scholar 

  27. Donnelly ML, Hughes LE, Luke G, Mendoza H, ten Dam E, Gani D, Ryan MD (2001) The ‘cleavage’ activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring ‘2A-like’ sequences. J Gen Virol 82(Pt 5):1027–1041. https://doi.org/10.1099/0022-1317-82-5-1027

    CrossRef  PubMed  CAS  Google Scholar 

  28. Hefferon K (2013) Plant-derived pharmaceuticals for the developing world. Biotechnol J 8(10):1193–1202. https://doi.org/10.1002/biot.201300162

    CrossRef  PubMed  CAS  Google Scholar 

  29. Aboul-Ata AA, Vitti A, Nuzzaci M, El-Attar AK, Piazzolla G, Tortorella C, Harandi AM, Olson O, Wright SA, Piazzolla P (2014) Plant-based vaccines: novel and low-cost possible route for Mediterranean innovative vaccination strategies. Adv Virus Res 89:1–37. https://doi.org/10.1016/B978-0-12-800172-1.00001-X

    CrossRef  PubMed  CAS  Google Scholar 

  30. Shukla S, Ablack AL, Wen AM, Lee KL, Lewis JD, Steinmetz NF (2013) Increased tumor homing and tissue penetration of the filamentous plant viral nanoparticle potato virus X. Mol Pharm 10(1):33–42. https://doi.org/10.1021/mp300240m

    CrossRef  PubMed  CAS  Google Scholar 

  31. Shukla S, Dickmeis C, Nagarajan AS, Fischer R, Commandeur U, Steinmetz NF (2014) Molecular farming of fluorescent virus-based nanoparticles for optical imaging in plants, human cells and mouse models. Biomater Sci 2(5):784–797. https://doi.org/10.1039/C3BM60277J

    CrossRef  CAS  PubMed  Google Scholar 

  32. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor,N.Y. doi:citeulike-article-id:3334416

    Google Scholar 

  33. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Science Foundation (NSF CMMI NM 1333651) to NFS; a grant from Susan G. Komen Foundation (CCR14298962) to NFS; and a Scholarship RFwN from RWTH Aachen University to CD.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ulrich Commandeur or Nicole F. Steinmetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Shukla, S., Dickmeis, C., Fischer, R., Commandeur, U., Steinmetz, N.F. (2018). In Planta Production of Fluorescent Filamentous Plant Virus-Based Nanoparticles. In: Wege, C., Lomonossoff, G. (eds) Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, vol 1776. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7808-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7808-3_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7806-9

  • Online ISBN: 978-1-4939-7808-3

  • eBook Packages: Springer Protocols