Skip to main content

Fabrication of Tobacco Mosaic Virus-Like Nanorods for Peptide Display

Part of the Methods in Molecular Biology book series (MIMB,volume 1776)

Abstract

Virus-like particles (VLPs) are genome-free protein shells assembled from virus coat proteins (CPs). The uniform and nanoscale structure of VLPs combined with their noninfectious nature have made them ideal candidates for the display of functional peptides. While the vast majority of VLPs are derived from spherical viruses, tobacco mosaic virus (TMV) produces a rod-shaped particle with a hollow central channel. However, under physiological conditions the TMV CP forms only disk-shaped macromolecules. Here, we describe the design, construction, purification, and processing of rod-shaped TMV-VLPs using a simple bacterial expression system. The robust nature of this system allows for the display of functional peptides and molecules on the outer surface of this novel VLP.

Key words

  • Virus-like particle
  • Nanoparticle
  • Peptide display
  • Self-assembly
  • Epitope display

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-7808-3_4
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7808-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fan XZ, Pomerantseva E, Gnerlich M, Brown A, Gerasopoulos K, McCarthy M, Culver J, Ghodssi R (2013) Tobacco mosaic virus: a biological building block for micro/nano/bio systems. J Vac Sci Technol A 31:1–24

    CrossRef  CAS  Google Scholar 

  2. Culver JN, Brown AD, Zang F, Gnerlich M, Gerasopoulos K, Ghodssi R (2015) Plant virus directed fabrication of nanoscale materials and devices. Virology 479-480:200–212

    CrossRef  CAS  PubMed  Google Scholar 

  3. Lee KL, Twyman RM, Fiering S, Steinmetz NF (2016) Virus-based nanoparticles as platform technologies for modern vaccines. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:554–578

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bittner AM, Alonso JM, Gorzny ML, Wege C (2013) Nanoscale science and technology with plant viruses and bacteriophages. Subcell Biochem 68:667–702

    CrossRef  CAS  PubMed  Google Scholar 

  5. Ghosh A, Guo JC, Brown AD, Royston E, Wang CS, Kofinas P, Culver JN (2012) Virus-assembled flexible electrode-electrolyte interfaces for enhanced polymer-based battery applications. J Nanomater 2012:1–6

    CrossRef  CAS  Google Scholar 

  6. McCarthy M, Gerasopoulos K, Enright R, Culver JN, Ghodssi R, Wang EN (2012) Biotemplated hierarchical surfaces and the role of dual length scales on the repellency of impacting droplets. Appl Phys Lett 100:1–5

    CrossRef  CAS  Google Scholar 

  7. Chiang CY, Epstein J, Brown A, Munday JN, Culver JN, Ehrman S (2012) Biological templates for antireflective current collectors for photoelectrochemical cell applications. Nano Lett 12:6005–6011

    CrossRef  CAS  PubMed  Google Scholar 

  8. Dedeo MT, Duderstadt KE, Berger JM, Francis MB (2010) Nanoscale protein assemblies from a circular permutant of the tobacco mosaic virus. Nano Lett 10:181–186

    CrossRef  CAS  PubMed  Google Scholar 

  9. Hwang DJ, Roberts IM, Wilson TM (1994) Expression of tobacco mosaic virus coat protein and assembly of pseudovirus particles in Escherichia Coli. Proc Natl Acad Sci U S A 91:9067–9071

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu B, Stubbs G, Culver JN (1996) Carboxylate interactions involved in the disassembly of tobacco mosaic tobamovirus. Virology 225:11–20

    CrossRef  CAS  PubMed  Google Scholar 

  11. Namba K, Pattanayek R, Stubbs G (1989) Visualization of protein-nucleic acid interactions in a virus–refined structure of intact tobacco mosaic virus at 2.9 a resolution by X-ray fiber diffraction. J Mol Biol 208:307–325

    CrossRef  CAS  PubMed  Google Scholar 

  12. Brown AD, Naves L, Wang X, Ghodssi R, Culver JN (2013) Carboxylate-directed in vivo assembly of virus-like nanorods and tubes for the display of functional peptides and residues. Biomacromolecules 14:3123–3129

    CrossRef  CAS  PubMed  Google Scholar 

  13. Freifelder DM (1982) Physical biochemistry, applications to biochemistry and molecular biology vol. W. H. Freeman and Company, San Francisco

    Google Scholar 

  14. Porterfield JZ, Zlotnick A (2010) A simple and general method for determining the protein and nucleic acid content of viruses by UV absorbance. Virology 407:281–288

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu P, Feng MG (2008) Bifunctional enhancement of a beta-glucanase-xylanase fusion enzyme by optimization of peptide linkers. Appl Microbiol Biotechnol 79:579–587

    CrossRef  CAS  PubMed  Google Scholar 

  16. Zang FH, Gerasopoulos K, Fan XZ, Brown AD, Culver JN, Ghodssi R (2014) An electrochemical sensor for selective TNT sensing based on tobacco mosaic virus-like particle binding agents. Chem Commun (Camb) 50:12977–12980

    CrossRef  CAS  Google Scholar 

  17. Fan XZ, Naves L, Siwak NP, Brown A, Culver J, Ghodssi R (2015) Integration of genetically modified virus-like-particles with an optical resonator for selective bio-detection. Nanotechnology 26:1–9

    Google Scholar 

  18. Royston E, Ghosh A, Kofinas P, Harris MT, Culver JN (2008) Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. Langmuir 24:906–912

    CrossRef  CAS  PubMed  Google Scholar 

  19. Inokuchi H, Yamao F, Sakano H, Ozeki H (1979) Identification of transfer RNA suppressors in Escherichia Coli. I. Amber suppressor su+2, an anticodon mutant of tRNA2Gln. J Mol Biol 132:649–662

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Biochemistry Program of the Army Research Office, award W911NF1410286.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James N. Culver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Larkin, E.J., Brown, A.D., Culver, J.N. (2018). Fabrication of Tobacco Mosaic Virus-Like Nanorods for Peptide Display. In: Wege, C., Lomonossoff, G. (eds) Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, vol 1776. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7808-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7808-3_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7806-9

  • Online ISBN: 978-1-4939-7808-3

  • eBook Packages: Springer Protocols