Skip to main content

Production of Mosaic Turnip Crinkle Virus-Like Particles Derived by Coinfiltration of Wild-Type and Modified Forms of Virus Coat Protein in Plants

Part of the Methods in Molecular Biology book series (MIMB,volume 1776)

Abstract

When the coat protein reading frame of turnip crinkle virus (TCV) is transiently expressed in leaves, virus-like particles (VLPs) are readily formed. However, after introducing genetic modifications to the full-length coat protein sequence, such as the introduction of an epitope-specific sequence within the coat protein sequence or the in-frame carboxyl terminal fusion of GFP, the formation of such modified VLPs is poor. However, by coexpression of one of these modified forms with wild-type TCV coat protein by the coinfiltration of appropriate Agrobacterium suspensions, VLP generation is enhanced through the formation of “mosaics,” that is, individual VLPs consisting of both modified and wild-type subunits (also known as phenotypically mixed VLPs). Here we describe methods for the introduction of genetic modifications into the TCV coat protein sequence, the production of mosaic TCV VLPs and their characterization.

Key words

  • Turnip crinkle virus
  • Plant infiltrations
  • Virus-like particles
  • Mosaic
  • Agrobacterium
  • Bionanotechnology
  • Transient expression
  • Epitope display

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-7808-3_1
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7808-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hogle JM, Maeda A, Harrison SC (1986) Structure and assembly of turnip crinkle virus. I. X-ray crystallographic structure analysis at 3.2 Å resolution. J Mol Biol 191:625–638

    CrossRef  CAS  PubMed  Google Scholar 

  2. Bakker SE, Ford RJ, Barker AM, Robottom J, Saunders K, Pearson AP, Ranson NA, Stockley PG (2012) Isolation of an asymmetric RNA uncoating intermediate for a single-stranded RNA plant virus. J Mol Biol 417:65–78

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stockley PG, Kirsch AL, Chow EP, Smart JE, Harrison SC (1986) Structure of turnip crinkle virus: III. Identification of a unique coat protein dimer. J Mol Biol 191:721–725

    CrossRef  CAS  PubMed  Google Scholar 

  4. Sainsbury F, Lomonossoff GP (2008) Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiol 148:1212–1218

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sainsbury F, Thuenemann EC, Lomonossoff GP (2009) pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J 7:682–693

    CrossRef  CAS  PubMed  Google Scholar 

  6. Saunders K, Lomonossoff GP (2015) The generation of turnip crinkle virus-like particles in plants by the transient expression of wild-type and modified forms of its coat protein. Front Plant Sci 6:1138. https://doi.org/10.3389/fpls.2015.01138

    CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Lomonossoff GP, Evans DJ (2011) Applications of plant viruses in bionanotechnology. Curr Top Microbiol Immunol 375:61–87

    PubMed Central  Google Scholar 

  8. Saunders K, Lomonossoff GP (2013) Exploiting plant virus-derived components to achieve in planta expression and for templates for synthetic biology applications. New Phytol 200(1):16–26. https://doi.org/10.1111/nph.12204

    CrossRef  PubMed  CAS  PubMed Central  Google Scholar 

  9. Steele JF, Peyret H, Saunders K, Castells-Graells R, Marsian J, Meshcheriakova Y, Lomonossoff GP (2017) Synthetic plant virology for nanobiotechnology and nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(4). https://doi.org/10.1002/wnan.1447

    Google Scholar 

  10. Marsian J, Lomonossoff GP (2016) Molecular pharming-VLPs made in plants. Curr Opin Biotechnol 37:201–206

    CrossRef  CAS  PubMed  Google Scholar 

  11. Cho C-F, Shukla S, Simpson EJ, Steinmetz NF, Luyt LG, Lewis JD (2014) Molecular targeted viral nanoparticles as tools for imaging cancer. Methods Mol Biol 1108:211–230. https://doi.org/10.1007/978-1-62703-751-8_11. © Springer Science+Business Media, New York

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  12. Thomas CL, Leh V, Lederer C, Maule AJ (2003) Turnip crinkle virus coat protein mediates suppression of RNA silencing in Nicotiana benthamiana. Virology 306:33–41. https://doi.org/10.1016/S0042-6822(02)00018-1

    CrossRef  PubMed  CAS  Google Scholar 

  13. Mattanovich D, Rüker F, da Câmara Machado A, Laimer M, Regner F, Stein-kellner H, Himmler G, Katinger H (1989) Efficient transformation of Agrobacterium spp. by electroporation. Nucleic Acids Res 17:6747

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peyret H (2015) A protocol for the gentle purification of virus-like particles produced in plants. J Virol Methods 225:59–63

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the UK Biotechnological and Biological Sciences Research Council (BBSRC) Institute Strategic Programme Grant “Understanding and Exploiting Plant and Microbial Secondary Metabolism” (BB/J004596/1) and the John Innes Foundation. We thank Elaine Barclay for TEM assistance and Andrew Davis for photography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Saunders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Castells-Graells, R., Lomonossoff, G.P., Saunders, K. (2018). Production of Mosaic Turnip Crinkle Virus-Like Particles Derived by Coinfiltration of Wild-Type and Modified Forms of Virus Coat Protein in Plants. In: Wege, C., Lomonossoff, G. (eds) Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, vol 1776. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7808-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7808-3_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7806-9

  • Online ISBN: 978-1-4939-7808-3

  • eBook Packages: Springer Protocols