Skip to main content

Packaging DNA Origami into Viral Protein Cages

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1776))

Abstract

The DNA origami technique is a widely used method to create customized, complex, spatially well-defined two-dimensional (2D) and three-dimensional (3D) DNA nanostructures. These structures have huge potential to serve as smart drug-delivery vehicles and molecular devices in various nanomedical and biotechnological applications. However, so far only little is known about the behavior of these novel structures in living organisms or in cell culture/tissue models. Moreover, enhancing pharmacokinetic bioavailability and transfection properties of such structures still remains a challenge. One intriguing approach to overcome these issues is to coat DNA origami nanostructures with proteins or lipid membranes. Here, we show how cowpea chlorotic mottle virus (CCMV) capsid proteins (CPs) can be used for coating DNA origami nanostructures. We present a method for disassembling native CCMV particles and isolating the pure CP dimers, which can further bind and encapsulate a rectangular DNA origami shape. Owing to the highly programmable nature of DNA origami, packaging of DNA nanostructures into viral protein cages could find imminent uses in enhanced targeting and cellular delivery of various active nano-objects, such as enzymes and drug molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247

    Article  CAS  PubMed  Google Scholar 

  2. Seeman NC (2010) Nanomaterials based on DNA. Annu Rev Biochem 79:65–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Linko V, Dietz H (2013) The enabled state of DNA nanotechology. Curr Opin Biotechnol 24:555–561

    Article  CAS  PubMed  Google Scholar 

  4. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  PubMed  Google Scholar 

  5. Douglas SM, Dietz H, Liedl T, Högberg B, Graf F, Shih WM (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459:414–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Linko V, Kostiainen MA (2016) Automated design of DNA origami. Nat Biotechnol 34:826–827

    Article  CAS  PubMed  Google Scholar 

  7. Fu J, Liu M, Liu Y, Woodbury NW, Yan H (2012) Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J Am Chem Soc 134:5516–5519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E-M, Högele A, Simmel FC, Govorov AO, Liedl T (2012) DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483:311–314

    Article  CAS  PubMed  Google Scholar 

  9. Maune HT, Han S-p, Barish RD, Bockrath M, Goddard WA III, Rothemund PWK, Winfree E (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nature Nanotech 5:61–66

    Article  CAS  Google Scholar 

  10. Linko V, Eerikäinen M, Kostiainen MA (2015) A modular DNA origami-based enzyme cascade nanoreactor. Chem Commun 51:5351–5354

    Article  CAS  Google Scholar 

  11. Shen B, Linko V, Tapio K, Kostiainen MA, Toppari JJ (2015) Custom-shaped metal nanostructures based on DNA origami silhouettes. Nanoscale 7:11267–11272

    Article  CAS  PubMed  Google Scholar 

  12. Shen B, Linko V, Dietz H, Toppari JJ (2015) Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide. Electrophoresis 36:255–262

    Article  CAS  PubMed  Google Scholar 

  13. Linko V, Shen B, Tapio K, Toppari JJ, Kostiainen MA, Tuukkanen S (2015) One-step large-scale deposition of salt-free DNA origami nanostructures. Sci Rep 5:15634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen Y-J, Groves B, Muscat RA, Seelig G (2015) DNA nanotechnology from the test tube to the cell. Nature Nanotech 10:748–760

    Article  CAS  Google Scholar 

  15. Linko V, Ora A, Kostiainen MA (2015) DNA nanostructures as smart drug-delivery vehicles and molecular devices. Trends Biotechnol 33:586–594

    Article  CAS  PubMed  Google Scholar 

  16. Ko S-H, Liu H, Chen Y, Mao C (2008) DNA nanotubes as combinatorial vehicles for cellular delivery. Biomacromolecules 9:3039–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schüller VJ, Heidegger S, Sandholzer N, Nickels PC, Suhartha NA, Endres S, Bourquin C, Liedl T (2011) Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano 5:9696–9702

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Y-X, Shaw A, Zeng X, Benson E, Nyström AM, Högberg B (2012) DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 6:8684–8691

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Q, Jiang Q, Li N, Dai L, Liu Q, Song L, Wang J, Li Y, Tian J, Ding B, Du Y (2014) DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano 8:6633–6643

    Article  CAS  PubMed  Google Scholar 

  20. Ora A, Järvihaavisto E, Zhang H, Auvinen H, Santos HA, Kostiainen MA, Linko V (2016) Cellular delivery of enzyme-loaded DNA origami. Chem Commun 52:14161–14164

    Article  CAS  Google Scholar 

  21. Okholm AH, Nielsen JS, Vinther M, Sørensen RS, Schaffert D, Kjems J (2014) Quantification of cellular uptake of DNA nanostructures by qPCR. Methods 67:193–197

    Article  CAS  PubMed  Google Scholar 

  22. Brglez J, Nikolov P, Angelin A, Niemeyer CM (2015) Designed intercalators for modification of DNA origami surface properties. Chem Eur J 21:9440–9446

    Article  CAS  PubMed  Google Scholar 

  23. Kiviaho JK, Linko V, Ora A, Tianen T, Järvihaavisto E, Mikkilä J, Tenhu H, Nonappa, Kostiainen MA (2016) Cationic polymers for DNA origami coating – examining their binding efficiency and tuning the enzymatic reaction rates. Nanoscale 8:11674–11680

    Article  CAS  PubMed  Google Scholar 

  24. Perrault SD, Shih WM (2014) Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 8:5132–5140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma Y, Nolte RJM, Cornelissen JJLM (2012) Virus-based nanocarriers for drug delivery. Adv Drug Deliv Rev 64:811–825

    Article  CAS  PubMed  Google Scholar 

  26. Yildiz I, Shukla S, Steinmetz NF (2011) Applications of viral nanoparticles in medicine. Curr Opin Biotechnol 22:901–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mukherjee S, Pfeifer CM, Johnson JM, Liu J, Zlotnick A (2006) Redirecting the coat protein of a spherical virus to assemble into tubular nanostructures. J Am Chem Soc 128:2538–2539

    Article  CAS  PubMed  Google Scholar 

  28. Kwak M, Minten IJ, Anaya D-M, Musser AJ, Brasch M, Nolte RJM, Müllen K, Cornelissen JJLM, Herrmann A (2010) Virus-like particles templated by DNA micelles: a general method for loading virus nanocarriers. J Am Chem Soc 132:7834–7835

    Article  CAS  PubMed  Google Scholar 

  29. Geiger FC, Eber FJ, Eiben S, Mueller A, Jeske H, Spatz JP, Wege C (2013) TMV nanorods with programmed longitudinal domains of differently addressable coat proteins. Nanoscale 5:3808–3816

    Article  CAS  PubMed  Google Scholar 

  30. Douglas T, Young M (1998) Host-guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155

    Article  CAS  Google Scholar 

  31. Young M, Willits D, Uchida M, Douglas T (2008) Plant viruses as biotemplates for materials and their use in nanotechnology. Annu Rev Phytopathol 46:361–384

    Article  CAS  PubMed  Google Scholar 

  32. Kostiainen MA, Hiekkataipale P, Laiho A, Lemieux V, Seitsonen J, Ruokolainen J, Ceci P (2013) Electrostatic assembly of binary nanoparticle superlattices using protein cages. Nature Nanotech 8:52–56

    Article  CAS  Google Scholar 

  33. Mikkilä J, Rosilo H, Nummelin S, Seitsonen J, Ruokolainen J, Kostiainen MA (2013) Janus-dendrimer-mediated formation of crystalline virus assemblies. ACS Macro Lett 2:720–724

    Article  CAS  Google Scholar 

  34. Liljeström V, Mikkilä J, Kostiainen MA (2014) Self-assembly and modular functionalization of three-dimensional crystals from oppositely charged proteins. Nat Commun 5:4445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mikkilä J, Eskelinen A-P, Niemelä EH, Linko V, Frilander MJ, Törmä P, Kostiainen MA (2014) Virus-encapsulated DNA origami nanostructures for cellular delivery. Nano Lett 14:2196–2200

    Article  CAS  PubMed  Google Scholar 

  36. Bruinsma RF, Gelbart WM, Reguera D, Rudnick J, Zandi R (2003) Viral self-assembly as a thermodynamic process. Phys Rev Lett 90:248101

    Article  CAS  PubMed  Google Scholar 

  37. Hung AM, Micheel CM, Bozano LD, Osterbur LW, Wallraff GM, Cha JN (2010) Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nature Nanotech 5:121–126

    Article  CAS  Google Scholar 

  38. O’Neill P, Rothemund PWK, Kumar A, Fygenson DK (2006) Sturdier nanotubes via ligation. Nano Lett 6:1379–1383

    Article  CAS  PubMed  Google Scholar 

  39. Tang J, Johnson JM, Dryden KA, Young MJ, Zlotnick A, Johnson JE (2006) The role of subunit hinges and molecular “switches” in the control of viral capsid polymorphism. J Struct Biol 154:59–67

    Article  CAS  PubMed  Google Scholar 

  40. Ke Y, Douglas SM, Liu M, Sharma J, Cheng A, Leung A, Liu Y, Shih WM, Yan H (2009) Multilayer DNA origami packed on a square lattice. J Am Chem Soc 131:15903–15908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Castro CE, Kilchherr F, Kim D-N, Shiao EL, Wauer T, Wortmann P, Bathe M, Dietz H (2011) A primer to scaffolded DNA origami. Nat Methods 8:221–229

    Article  CAS  PubMed  Google Scholar 

  42. Kuzyk A, Yurke B, Toppari JJ, Linko V, Törmä P (2008) Dielectrophoretic trapping of DNA origami. Small 4:447–450

    Article  CAS  PubMed  Google Scholar 

  43. Linko V, Paasonen S-T, Kuzyk A, Törmä P, Toppari JJ (2009) Characterization of the conductance mechanisms of DNA origami by AC impedance spectroscopy. Small 5:2382–2386

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Financial support from the Academy of Finland (grants 263504, 267497, 273645, and 286845), Jane and Aatos Erkko Foundation, Emil Aaltonen Foundation, and Biocentrum Helsinki is gratefully acknowledged. This work was carried out under the Academy of Finland Centers of Excellence Programme (2014–2019) and made use of the Aalto Nanomicroscopy Centre (Aalto NMC) premises.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauri A. Kostiainen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Linko, V., Mikkilä, J., Kostiainen, M.A. (2018). Packaging DNA Origami into Viral Protein Cages. In: Wege, C., Lomonossoff, G. (eds) Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, vol 1776. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7808-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7808-3_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7806-9

  • Online ISBN: 978-1-4939-7808-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics