Speir JA, Munshi S, Wang G et al (1995) Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3:63–78. https://doi.org/10.1016/S0969-2126(01)00135-6
CrossRef
PubMed
PubMed Central
CAS
Google Scholar
Caspar DLD, Klug A (1962) Physical Principles in the Construction of Regular Viruses. Cold Spring Harb Symp Quant Biol 27:1–24. https://doi.org/10.1101/SQB.1962.027.001.005
CrossRef
PubMed
CAS
Google Scholar
Carrillo-Tripp M, Shepherd CM, Borelli IA et al (2009) VIPERdb2: an enhanced and web API enabled relational database for structural virology. Nucleic Acids Res 37:D436–D442
CrossRef
CAS
PubMed
Google Scholar
Zlotnick A, Aldrich R, Johnson JM et al (2000) Mechanism of capsid assembly for an icosahedral plant virus. Virology 277:450–456. https://doi.org/10.1006/viro.2000.0619
CrossRef
PubMed
CAS
Google Scholar
Mukherjee S, Pfeifer CM, Johnson JM et al (2006) Redirecting the coat protein of a spherical virus to assemble into tubular nanostructures. J Am Chem Soc 128:2538–2539. https://doi.org/10.1021/ja056656f
CrossRef
PubMed
CAS
Google Scholar
Lavelle L, Gingery M, Phillips M et al (2009) Phase diagram of self-assembled viral capsid protein polymorphs. J Phys Chem B 113:3813–3819. https://doi.org/10.1021/jp8079765
CrossRef
PubMed
CAS
Google Scholar
Garmann RF, Sportsman R, Beren C et al (2015) A simple RNA-DNA scaffold templates the assembly of monofunctional virus-like particles. J Am Chem Soc 137:7584–7587. https://doi.org/10.1021/jacs.5b03770
CrossRef
PubMed
PubMed Central
CAS
Google Scholar
Douglas T, Young M (2006) Viruses: making friends with old foes. Science 312:873–875. https://doi.org/10.1126/science.1123223
CrossRef
PubMed
CAS
Google Scholar
Kostiainen MA, Kasyutich O, Cornelissen JJ, Nolte RJ (2010) Self-assembly and optically triggered disassembly of hierarchical dendron–virus complexes. Nat Chem 2:394–399. https://doi.org/10.1038/nchem.592
CrossRef
PubMed
CAS
Google Scholar
Tsvetkova IB, Dragnea BG (2015) Encapsulation of nanoparticles in virus protein shells. In: Protein Cages. Springer, New York, pp 1–15. https://doi.org/10.1007/978-1-4939-2131-7_1
CrossRef
Google Scholar
Destito G, Yeh R, Rae CS et al (2007) Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem Biol 14:1152–1162. https://doi.org/10.1016/j.chembiol.2007.08.015
CrossRef
PubMed
PubMed Central
CAS
Google Scholar
Aljabali AA, Shukla S, Lomonossoff GP et al (2012) CPMV-DOX Delivers. Mol Pharm 10:3–10. https://doi.org/10.1021/mp3002057
CrossRef
PubMed
PubMed Central
CAS
Google Scholar
Azizgolshani O, Garmann RF, Cadena-Nava R et al (2013) Reconstituted plant viral capsids can release genes to mammalian cells. Virology 441:12–17. https://doi.org/10.1016/j.virol.2013.03.001
CrossRef
PubMed
CAS
Google Scholar
Dalsgaard K, Uttenthal A, Jones TD et al (1997) Plant-derived vaccine protects target animals against a viral disease: Abstract: Nature Biotechnology. Nat Biotech 15:248–252. https://doi.org/10.1038/nbt0397-248
CrossRef
CAS
Google Scholar
Steinmetz NF, Lin T, Lomonossoff GP, Johnson JE (2009) Structure-based engineering of an icosahedral virus for nanomedicine and nanotechnology. In: Viruses Nanotechnol. Springer, New York, pp 23–58. https://doi.org/10.1007/978-3-540-69379-6_2
CrossRef
Google Scholar
Plummer EM, Manchester M (2011) Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:174–196. https://doi.org/10.1002/wnan.119
CrossRef
PubMed
CAS
Google Scholar
Wang Q, Kaltgrad E, Lin T et al (2002) Natural supramolecular building blocks: wild-type cowpea mosaic virus. Chem Biol 9:805–811. https://doi.org/10.1016/S1074-5521(02)00165-5
CrossRef
CAS
Google Scholar
Strable E, Johnson JE, Finn MG (2004) Natural nanochemical building blocks: icosahedral virus particles organized by attached oligonucleotides. Nano Lett 4:1385–1389. https://doi.org/10.1021/nl0493850
CrossRef
CAS
Google Scholar
Steinmetz NF, Evans DJ, Lomonossoff GP (2007) Chemical introduction of reactive thiols into a viral nanoscaffold: a method that avoids virus aggregation. Chembiochem 8:1131–1136. https://doi.org/10.1002/cbic.200700126
CrossRef
PubMed
CAS
Google Scholar
Cadena-Nava RD, Comas-Garcia M, Garmann RF et al (2012) Self-assembly of viral capsid protein and RNA molecules of different sizes: requirement for a specific high protein/RNA mass ratio. J Virol 86:3318–3326. https://doi.org/10.1128/JVI.06566-11
CrossRef
PubMed
PubMed Central
CAS
Google Scholar
Krol MA, Olson NH, Tate J et al (1999) RNA-controlled polymorphism in the in vivo assembly of 180-subunit and 120-subunit virions from a single capsid protein. Proc Natl Acad Sci 96:13650–13655. https://doi.org/10.1073/pnas.96.24.13650
CrossRef
PubMed
PubMed Central
CAS
Google Scholar
Bancroft JB, Hiebert E (1967) Formation of an infectious nucleoprotein from protein and nucleic acid isolated from a small spherical virus. Virology 32:354–356. https://doi.org/10.1016/0042-6822(67)90284-X
CrossRef
CAS
PubMed
Google Scholar
Hiebert E, Bancroft JB (1969) Factors affecting the assembly of some spherical viruses. Virology 39:296–311. https://doi.org/10.1016/0042-6822(69)90050-6
CrossRef
PubMed
CAS
Google Scholar
Adolph KW, Butler PJG (1975) Reassembly of a spherical virus in mild conditions. Nature 255:737–738. https://doi.org/10.1038/255737a0
CrossRef
PubMed
CAS
Google Scholar
Garmann RF, Comas-Garcia M, Knobler CM, Gelbart WM (2016) Physical principles in the self-assembly of a simple spherical virus. Acc Chem Res 49:48–55. https://doi.org/10.1021/acs.accounts.5b00350
CrossRef
PubMed
CAS
Google Scholar
Garmann RF, Comas-Garcia M, Koay MS et al (2014) Role of electrostatics in the assembly pathway of a single-stranded RNA virus. J Virol 88:10472–10479. https://doi.org/10.1128/JVI.01044-14
CrossRef
PubMed
PubMed Central
CAS
Google Scholar
Garmann RF, Comas-Garcia M, Gopal A et al (2014) The assembly pathway of an icosahedral single-stranded RNA virus depends on the strength of inter-subunit attractions. J Mol Biol 426:1050–1060. https://doi.org/10.1016/j.jmb.2013.10.017
CrossRef
PubMed
CAS
Google Scholar
Adolph KW, Butler PJG (1974) Studies on the assembly of a spherical plant virus: I States of aggregation of the isolated protein. J Mol Biol 88:327–341. https://doi.org/10.1016/0022-2836(74)90485-9
CrossRef
PubMed
CAS
Google Scholar
Johnson JM, Willits DA, Young MJ, Zlotnick A (2004) Interaction with capsid protein alters RNA structure and the pathway for in vitro assembly of cowpea chlorotic mottle virus. J Mol Biol 335:455–464. https://doi.org/10.1016/j.jmb.2003.10.059
CrossRef
PubMed
CAS
Google Scholar
Johnson JM, Tang J, Nyame Y et al (2005) Regulating self-assembly of spherical oligomers. Nano Lett 5:765–770. https://doi.org/10.1021/nl050274q
CrossRef
PubMed
CAS
Google Scholar
Verduin BJM, Bancroft JB (1969) The infectivity of tobacco mosaic virus RNA in coat proteins from spherical viruses. Virology 37:501–506. https://doi.org/10.1016/0042-6822(69)90240-2
CrossRef
PubMed
CAS
Google Scholar
Zhao X, Fox JM, Olson NH et al (1995) In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro-transcribed viral cDNA. Virology 207:486–494. https://doi.org/10.1006/viro.1995.1108
CrossRef
PubMed
CAS
Google Scholar
Ni P, Wang Z, Ma X et al (2012) An examination of the electrostatic interactions between the N-Terminal tail of the brome mosaic virus coat protein and encapsidated RNAs. J Mol Biol 419:284–300. https://doi.org/10.1016/j.jmb.2012.03.023
CrossRef
PubMed
PubMed Central
CAS
Google Scholar
Rao A, Duggal R, Lahser F, Hall T (1994) Analysis of RNA replication in plant viruses. In: Adolph KW (ed) Methods Mol. Genet. Mol. Virol. Tech. Academic Press, Orlando, Florida, pp 216–236
Google Scholar
Zlotnick A, Porterfield JZ, Wang JC-Y (2013) To build a virus on a nucleic acid substrate. Biophys J 104:1595–1604. https://doi.org/10.1016/j.bpj.2013.02.005
CrossRef
PubMed
PubMed Central
CAS
Google Scholar
Nielsen H (2011) Working with RNA. In: Nielsen H (ed) RNA. Humana Press, pp 15–28. https://doi.org/10.1007/978-1-59745-248-9_2
Google Scholar
Brumfield S, Willits D, Tang L et al (2004) Heterologous expression of the modified coat protein of Cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function. J Gen Virol 85:1049–1053. https://doi.org/10.1099/vir.0.19688-0
CrossRef
PubMed
CAS
Google Scholar
Sambrook J, Russell DW (2006) SDS-polyacrylamide gel electrophoresis of proteins. CSH Protoc. https://doi.org/10.1101/pdb.prot4540
De Carlo S, Harris JR (2011) Negative staining and cryo-negative staining of macromolecules and viruses for TEM. Micron 42:117–131. https://doi.org/10.1016/j.micron.2010.06.003
CrossRef
PubMed
CAS
Google Scholar