Skip to main content

CCMV-Based Enzymatic Nanoreactors

Part of the Methods in Molecular Biology book series (MIMB,volume 1776)

Abstract

Protein-based nanoreactors are generated by encapsulating an enzyme inside the capsid of the cowpea chlorotic mottle virus (CCMV). Here, three different noncovalent methods are described to efficiently incorporate enzymes inside the capsid of these viral protein cages. The methods are based on pH, leucine zippers, and electrostatic interactions respectively, as a driving force for encapsulation. The methods are exclusively described for the enzymes horseradish peroxidase, glucose oxidase, and Pseudozyma antarctica lipase B, but they are also applicable for other enzymes.

Key words

  • Cowpea chlorotic mottle virus (CCMV)
  • Functional cargo
  • Enzyme encapsulation
  • Virus-like particles
  • Nanoreactors
  • Leucine zippers
  • pH-responsive assembly

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-7808-3_16
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7808-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Minton AP, Wilf J (1981) Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 20:4821–4826

    CrossRef  CAS  PubMed  Google Scholar 

  2. Minton AP (2006) How can biochemical reactions within cells differ from those in test tubes? J Cell Sci 119:2863–2869

    CrossRef  CAS  PubMed  Google Scholar 

  3. Peters RJ, Marguet M, Marais S et al (2014) Cascade reactions in multicompartmentalized polymersomes. Angew Chem Int Ed 53:146–150

    CrossRef  CAS  Google Scholar 

  4. Marguet M, Bonduelle C, Lecommandoux S (2013) Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function. Chem Soc Rev 42:512–529

    CrossRef  CAS  PubMed  Google Scholar 

  5. Patterson DP, Schwarz B, Waters RS et al (2014) Encapsulation of an enzyme cascade within the bacteriophage P22 virus-like particle. ACS Chem Biol 9:359–365

    CrossRef  CAS  PubMed  Google Scholar 

  6. Patterson DP, Prevelige PE, Douglas T (2012) Nanoreactors by programmed enzyme encapsulation inside the capsid of the bacteriophage P22. ACS Nano 6:5000–5009

    CrossRef  CAS  PubMed  Google Scholar 

  7. Minten IJ, Claessen VI, Blank K et al (2011) Catalytic capsids: the art of confinement. Chem Sci 2:358–362

    CrossRef  CAS  Google Scholar 

  8. Douglas T, Young M (1998) Host-guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155

    CrossRef  CAS  Google Scholar 

  9. Bancroft JB, Hiebert E (1967) Formation of an infectious nucleoprotein from protein and nucleic acid isolated from a small spherical virus. Virology 32:354–356

    CrossRef  CAS  PubMed  Google Scholar 

  10. Bancroft JB, Hills GJ, Markham R (1967) A study of the self-assembly process in a small spherical virus. Formation of organized structures from protein subunits in vitro. Virology 31:354–379

    CrossRef  CAS  PubMed  Google Scholar 

  11. Speir JA, Munshi S, Wang G et al (1995) Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3:63–78

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  12. Comellas-Aragones M, Engelkamp H, Claessen VI et al (2007) A virus-based single-enzyme nanoreactor. Nat Nanotechnol 2:635–639

    CrossRef  CAS  PubMed  Google Scholar 

  13. Kwak M, Minten IJ, Anaya DM et al (2010) Virus-like particles templated by DNA micelles: a general method for loading virus nanocarriers. J Am Chem Soc 132:7834–7835

    CrossRef  CAS  PubMed  Google Scholar 

  14. Brasch M, de la Escosura A, Ma Y et al (2011) Encapsulation of phthalocyanine supramolecular stacks into virus-like particles. J Am Chem Soc 133:6878–6881

    CrossRef  CAS  PubMed  Google Scholar 

  15. Minten IJ, Ma Y, Hempenius MA et al (2009) CCMV capsid formation induced by a functional negatively charged polymer. Org Biomol Chem 7:4685–4688

    CrossRef  CAS  PubMed  Google Scholar 

  16. Comellas-Aragones M, de la Escosura A, Dirks AT et al (2009) Controlled integration of polymers into viral capsids. Biomacromolecules 10:3141–3147

    CrossRef  CAS  PubMed  Google Scholar 

  17. Minten IJ, Hendriks LJ, Nolte RJ et al (2009) Controlled encapsulation of multiple proteins in virus capsids. J Am Chem Soc 131:17771–17773

    CrossRef  CAS  PubMed  Google Scholar 

  18. Brasch M, Putri RM, de Ruiter MV et al (2017) Assembling enzymatic cascade pathways inside virus-based nanocages using dual-tasking nucleic acid tags. J Am Chem Soc 139:1512–1519

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rurup WF, Verbij F, Koay MST et al (2014) Predicting the loading of virus-like particles with fluorescent proteins. Biomacromolecules 15:558–563

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We acknowledge financial support from the ERC Consolidator Grant (Protcage) and the Indonesia Endowment Fund for Education (LPDP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen J. L. M. Cornelissen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

de Ruiter, M.V., Putri, R.M., Cornelissen, J.J.L.M. (2018). CCMV-Based Enzymatic Nanoreactors. In: Wege, C., Lomonossoff, G. (eds) Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, vol 1776. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7808-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7808-3_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7806-9

  • Online ISBN: 978-1-4939-7808-3

  • eBook Packages: Springer Protocols