Skip to main content

Bottom-Up Assembly of TMV-Based Nucleoprotein Architectures on Solid Supports

Part of the Methods in Molecular Biology book series (MIMB,volume 1776)

Abstract

RNA-guided self-assembly of tobacco mosaic virus (TMV)-like nucleoprotein nanotubes is possible using 3′-terminally surface-linked scaffold RNAs containing the viral origin of assembly (OAS). In combination with TMV coat protein (CP) preparations, these scaffold RNAs can direct the growth of selectively addressable multivalent carrier particles directly at sites of interest on demand. Serving as adapter templates for the installation of functional molecules, they may promote an integration of active units into miniaturized technical devices, or enable their presentation on soft-matter nanotube systems at high surface densities advantageous for, for example, biodetection or purification applications. This chapter describes all procedures essential for the bottom-up fabrication of “nanostar” colloids with gold cores and multiple TMV-like arms, immobilized in a programmable manner by way of hybridization of the RNA scaffolds to oligodeoxynucleotides exposed on the gold beads.

Key words

  • Tobacco mosaic virus (TMV)
  • Biotemplate
  • Self-assembly
  • Bottom-up
  • Coat protein (CP)
  • RNA
  • Origin of assembly (OAS)
  • Hybridization
  • Programmable
  • Nanostar

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-7808-3_11
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7808-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Koch C, Eber FJ, Azucena C, Förste A, Walheim S, Schimmel T, Bittner A, Jeske H, Gliemann H, Eiben S, Geiger F, Wege C (2016) Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies. Beilstein J Nanotechnol 7:613–629. https://doi.org/10.3762/bjnano.7.54

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  2. Culver JN, Brown AD, Zang F, Gnerlich M, Gerasopoulos K, Ghodssi R (2015) Plant virus directed fabrication of nanoscale materials and devices. Virology 479–480:200–212. https://doi.org/10.1016/j.virol.2015.03.008

    CrossRef  PubMed  CAS  Google Scholar 

  3. Bittner AM, Alonso JM, Górzny ML, Wege C (2013) Nanoscale science and technology with plant viruses and bacteriophages. In: Mateu MG (ed) Structure and physics of viruses: an integrated textbook, Subcellular biochemistry, vol 68. Springer Science+Business Media, Dordrecht, pp 667–702. https://doi.org/10.1007/978-94-007-6552-8_22. (ISSN: 0306-0225)

    CrossRef  Google Scholar 

  4. Wen AM, Steinmetz NF (2016) Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev 45:4074–4126. https://doi.org/10.1039/C5CS00287G

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  5. Caspar DLD (1963) Assembly and stability of the tobacco mosaic virus particle. Adv Protein Chem 18:37–121. https://doi.org/10.1016/S0065-3233(08)60268-5

    Google Scholar 

  6. Namba K, Pattanayek R, Stubbs G (1989) Visualization of protein-nucleic acid interactions in a virus. Refined structure of intact tobacco mosaic virus at 2.9 a resolution by X-ray fiber diffraction. J Mol Biol 208(2):307–325. https://doi.org/10.1016/0022-2836(89)90391-4

  7. Fromm SA, Bharat TAM, Jakobi AJ, Hagen WJH, Sachse C (2015) Seeing tobacco mosaic virus through direct electron detectors. J Struct Biol 189(2):87–97. https://doi.org/10.1016/j.jsb.2014.12.002

    CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Koch C, Wabbel K, Eber FJ, Krolla-Sidenstein P, Azucena C, Gliemann H, Eiben S, Geiger F, Wege C (2015) Modified TMV particles as beneficial scaffolds to present sensor enzymes. Front Plant Sci 6:1137. https://doi.org/10.3389/fpls.2015.01137

    CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Butler PJG (1999) Self-assembly of tobacco mosaic virus: the role of an intermediate aggregate in generating both specificity and speed. Philos Trans R Soc Lond B Biol Sci 354(1383):537–550. https://doi.org/10.1098/rstb.1999.0405

    CrossRef  CAS  Google Scholar 

  10. Schneider A, Eber FJ, Wenz N, Altintoprak K, Jeske H, Eiben S, Wege C (2016) Dynamic DNA-controlled “stop-and-go” assembly of well-defined protein domains on RNA-scaffolded TMV-like nanotubes. Nanoscale 8:19853–19866. https://doi.org/10.1039/C6NR03897B

    CrossRef  PubMed  CAS  Google Scholar 

  11. Wu Z, Mueller A, Degenhard S, Ruff SE, Geiger F, Bittner AM, Wege C, Krill CE 3rd (2010) Enhancing the magnetoviscosity of ferrofluids by the addition of biological nanotubes. ACS Nano 4(8):4531–4538. https://doi.org/10.1021/nn100645e

    CrossRef  CAS  PubMed  Google Scholar 

  12. Altintoprak K, Seidenstücker A, Krolla-Sidenstein P, Plettl A, Jeske H, Gliemann H, Wege C (2017) RNA-stabilized protein nanorings: high-precision adapters for biohybrid design. Bioinspir Biomim Nan 6:208–223. https://doi.org/10.1680/jbibn.16.00047

    CrossRef  Google Scholar 

  13. Eber FJ, Eiben S, Jeske H, Wege C (2015) RNA-controlled assembly of tobacco mosaic virus-derived complex structures: from nanoboomerangs to tetrapods. Nanoscale 7(1):344–355. https://doi.org/10.1039/c4nr05434b

    CrossRef  PubMed  CAS  Google Scholar 

  14. Eber FJ, Eiben S, Jeske H, Wege C (2013) Bottom-up-assembled nanostar colloids of gold cores and tubes derived from tobacco mosaic virus. Angew Chem Int Ed Engl 52(28):7203–7207. https://doi.org/10.1002/anie.201300834

    CrossRef  PubMed  CAS  Google Scholar 

  15. Mueller A, Eber FJ, Azucena C, Petershans A, Bittner AM, Gliemann H, Jeske H, Wege C (2011) Inducible site-selective bottom-up assembly of virus-derived nanotube arrays on RNA-equipped wafers. ACS Nano 5(6):4512–4520. https://doi.org/10.1021/nn103557s

    CrossRef  CAS  PubMed  Google Scholar 

  16. Azucena C, Eber FJ, Trouillet V, Hirtz M, Heissler S, Franzreb M, Fuchs H, Wege C, Gliemann H (2012) New approaches for bottom-up assembly of tobacco mosaic virus-derived nucleoprotein tubes on defined patterns on silica- and polymer-based substrates. Langmuir 28(42):14867–14877. https://doi.org/10.1021/la302774h

    CrossRef  PubMed  CAS  Google Scholar 

  17. Mueller A, Kadri A, Jeske H, Wege C (2010) In vitro assembly of tobacco mosaic virus coat protein variants derived from fission yeast expression clones or plants. J Virol Methods 166(1-2):77–85. https://doi.org/10.1016/j.jviromet.2010.02.026

    CrossRef  CAS  PubMed  Google Scholar 

  18. Geiger FC, Eber FJ, Eiben S, Mueller A, Jeske H, Spatz JP, Wege C (2013) TMV nanorods with programmed longitudinal domains of differently addressable coat proteins. Nanoscale 5(9):3808–3816. https://doi.org/10.1039/c3nr33724c

    CrossRef  PubMed  CAS  Google Scholar 

  19. Eiben S, Stitz N, Eber F, Wagner J, Atanasova P, Bill J, Wege C, Jeske H (2014) Tailoring the surface properties of tobacco mosaic virions by the integration of bacterially expressed mutant coat protein. Virus Res 180:92–96. https://doi.org/10.1016/j.virusres.2013.11.019

    CrossRef  PubMed  CAS  Google Scholar 

  20. Zimmern D (1983) An extended secondary structure model for the TMV assembly origin, and its correlation with protection studies and an assembly defective mutant. EMBO J 2(11):1901–1907. https://doi.org/10.1002/j.1460-2075.1983.tb01677.x

  21. Zimmern D (1977) The nucleotide sequence at the origin for assembly on tobacco mosaic virus RNA. Cell 11(3):463–482. https://doi.org/10.1016/0092-8674(77)90065-4

    CrossRef  CAS  PubMed  Google Scholar 

  22. Zimmern D, Butler PJG (1977) The isolation of tobacco mosaic virus RNA fragments containing the origin for viral assembly. Cell 11(3):455–462. https://doi.org/10.1016/0092-8674(77)90064-2

    CrossRef  PubMed  CAS  Google Scholar 

  23. Butler PJ, Lomonossoff GP (1980) RNA-protein interactions in the assembly of tobacco mosaic virus. Biophys J 32(1):295–312. https://doi.org/10.1016/S0006-3495(80)84958-7

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kadri A, Maiss E, Amsharov N, Bittner AM, Balci S, Kern K, Jeske H, Wege C (2011) Engineered tobacco mosaic virus mutants with distinct physical characteristics in planta and enhanced metallization properties. Virus Res 157(1):35–46. https://doi.org/10.1016/j.virusres.2011.01.014

    CrossRef  CAS  PubMed  Google Scholar 

  25. Gooding GV, Hebert TT (1967) A simple technique for purification of tobacco mosaic virus in large quantities. Phytopathology 57:1285

    PubMed  Google Scholar 

  26. Green MR, Sambrook J (2012) Molecular cloning : a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  27. Fraenkel-Conrat H (1957) Degradation of tobacco mosaic virus with acetic acid. Virology 4(1):1–4. https://doi.org/10.1016/0042-6822(57)90038-7

    CrossRef  CAS  PubMed  Google Scholar 

  28. Hakkinen H (2012) The gold-sulfur interface at the nanoscale. Nat Chem 4(6):443–455. https://doi.org/10.1038/nchem.1352

    CrossRef  PubMed  CAS  Google Scholar 

  29. Demers LM, Mirkin CA, Mucic RC, Reynolds RA 3rd, Letsinger RL, Elghanian R, Viswanadham G (2000) A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem 72(22):5535–5541. https://doi.org/10.1021/ac0006627

    CrossRef  CAS  PubMed  Google Scholar 

  30. Taton TA (2002) Preparation of gold nanoparticle-DNA conjugates. Curr Protoc Nucleic Acid Chem 12.12.11–12.12.12. https://doi.org/10.1002/0471142700.nc1202s09

  31. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49(19):3280–3294. https://doi.org/10.1002/anie.200904359

    CrossRef  CAS  PubMed  Google Scholar 

  32. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Goldnanopartikel in Biologie und Medizin. Angew Chem 122(19):3252–3266. https://doi.org/10.1002/ange.200904359

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Wege .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Wege, C., Eber, F. (2018). Bottom-Up Assembly of TMV-Based Nucleoprotein Architectures on Solid Supports. In: Wege, C., Lomonossoff, G. (eds) Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, vol 1776. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7808-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7808-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7806-9

  • Online ISBN: 978-1-4939-7808-3

  • eBook Packages: Springer Protocols