Skip to main content

Three-Dimensional Magnetic Levitation Culture System Simulating White Adipose Tissue

  • Protocol
Adipose-Derived Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1773))

Abstract

White adipose tissue (WAT) has attracted interest for tissue engineering and cell-based therapies as an abundant source of adipose stem/stromal cells (ASC). However, technical challenges in WAT cell culture have limited its applications in regenerative medicine. Traditional two-dimensional (2D) cell culture models, which are essentially monolayers of cells on glass or plastic substrates, inadequately represent tissue architecture, biochemical concentration gradients, substrate stiffness, and most importantly for WAT research, cell phenotypic heterogeneity. Physiological cell culture platforms for WAT modeling must recapitulate the native diversity of cell types and their coordination within the organ. For this purpose, we developed a three-dimensional (3D) model using magnetic levitation. Here, we describe our protocol that we successfully employed to build adipose tissue organoids (adipospheres) that preserve the heterogeneity of the constituent cell types in vitro. We demonstrate the capacity of assembling adipospheres from multiple cell types, including ASCs, endohtelial cells, and leukocytes that recreate tissue organization. These adipospheres mimicked WAT organogenesis in that they enabled the formation of vessel-like endothelial structures with lumens and differentiation of unilocular adipocytes. Altogether, magnetic levitation is a cell culture platform that recreates tissue structure, function, and heterogeneity in vitro, and serves as a foundation for high-throughput WAT tissue culture and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daquinag AC, Zhang Y, Kolonin MG (2011) Vascular targeting of adipose tissue as an anti-obesity approach. Trends Pharmacol Sci 32(5):300–307

    Article  PubMed  CAS  Google Scholar 

  2. Han J, Koh YJ, Moon HR et al (2010) Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells. Blood 115:957–964

    Article  PubMed  CAS  Google Scholar 

  3. Bianco P (2014) “Mesenchymal” stem cells. Annu Rev Cell Dev Biol 30:677–704

    Article  PubMed  CAS  Google Scholar 

  4. Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2:313–319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kolonin MG, Simmons PJ (2009) Combinatorial stem cell mobilization. Nat Biotechnol 27(3):252–253

    Article  PubMed  CAS  Google Scholar 

  6. Choi JH, Gimble JM, Lee K et al (2010) Adipose tissue engineering for soft tissue regeneration. Tissue Eng Part B Rev 16:413–426

    Article  PubMed  PubMed Central  Google Scholar 

  7. Scherberich A, Müller AM, Schäfer DJ et al (2010) Adipose tissue-derived progenitors for engineering osteogenic and vasculogenic grafts. J Cell Physiol 225(2):348–353

    Article  PubMed  CAS  Google Scholar 

  8. Güven S, Mehrkens A, Saxer F et al (2011) Engineering of large osteogenic grafts with rapid engraftment capacity using mesenchymal and endothelial progenitors from human adipose tissue. Biomaterials 32:5801–5809

    Article  PubMed  CAS  Google Scholar 

  9. Kolonin MG, Evans KW, Mani SA et al (2012) Alternative origins of stroma in normal organs and disease. Stem Cell Res 8(2):312–323

    Article  PubMed  CAS  Google Scholar 

  10. Schindler M, Nur-E-Kamal A, Ahmed I et al (2006) Living in three dimensions: 3D nanostructured environments for cell culture and regenerative medicine. Cell Biochem Biophys 45:215–227

    Article  PubMed  CAS  Google Scholar 

  11. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224

    Article  PubMed  CAS  Google Scholar 

  12. Peyton SR, Kim PD, Ghajar CM et al (2008) The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system. Biomaterials 29:2597–2607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Pedersen JA, Swartz MA (2005) Mechanobiology in the third dimension. Ann Biomed Eng 33:1469–1490

    Article  PubMed  Google Scholar 

  14. Zhang S (2004) Beyond the Petri dish. Nat Biotechnol 22:151–152

    Article  PubMed  CAS  Google Scholar 

  15. Kleinman HK, Philp D, Hoffman MP (2003) Role of the extracellular matrix in morphogenesis. Curr Opin Biotechnol 14:526–532

    Article  PubMed  CAS  Google Scholar 

  16. Cukierman E, Pankov R, Stevens DR et al (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712

    Article  PubMed  CAS  Google Scholar 

  17. Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845

    Article  PubMed  CAS  Google Scholar 

  18. Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

  19. Daquinag AC, Zhang Y, Amaya-Manzanares F et al (2011) An isoform of decorin is a resistin receptor on the surface of adipose progenitor cells. Cell Stem Cell 9:74–86

    Article  PubMed  CAS  Google Scholar 

  20. Traktuev DO, Merfeld-Clauss S, Li J et al (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102:77–85

    Article  PubMed  CAS  Google Scholar 

  21. Souza GR, Molina JR, Raphael RM et al (2010) Three-dimensional tissue culture based on magnetic cell levitation. Nat Nanotechnol 5:291–296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Tseng H, Gage JA, Raphael RM et al (2013) Assembly of a three-dimensional multitype bronchiole coculture model using magnetic levitation. Tissue Eng Part C Methods 19:665–675

    Article  PubMed  CAS  Google Scholar 

  23. Molina JR, Hayashi Y, Stephens C et al (2010) Invasive glioblastoma cells acquire stemness and increased Akt activation. Neoplasia 12:453–463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Xu L, Gao G, Ren J et al (2012) Estrogen receptor β of host promotes the progression of lung cancer brain metastasis of an orthotopic mouse model. J Cancer Ther 3:352–358

    Article  CAS  Google Scholar 

  25. Lee JS, Morrisett JD, Tung C-H (2012) Detection of hydroxyapatite in calcified cardiovascular tissues. Atherosclerosis 224:340–347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Castro-Chavez F, Vickers KC, Lee JS et al (2013) Effect of lyso-phosphatidylcholine and Schnurri-3 on osteogenic transdifferentiation of vascular smooth muscle cells to calcifying vascular cells in 3D culture. Biochim Biophys Acta 1830:3828–3834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Becker JL, Souza GR (2013) Using space-based investigations to inform cancer research on Earth. Nat Rev Cancer 13:315–327

    Article  PubMed  CAS  Google Scholar 

  28. Haisler WL, Timm DM, Gage JA et al (2013) Three-dimensional cell culturing by magnetic levitation. Nat Protoc 8:1940–1949

    Article  PubMed  CAS  Google Scholar 

  29. Timm DM, Chen J, Sing D et al (2013) A high-throughput three-dimensional cell migration assay for toxicity screening with mobile device-based macroscopic image analysis. Sci Rep 3:3000

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tseng H, Balaoing LR, Grigoryan B et al (2014) A three-dimensional co-culture model of the aortic valve using magnetic levitation. Acta Biomater 10:173–182

    Article  PubMed  CAS  Google Scholar 

  31. Jaganathan H, Gage J, Leonard F et al (2014) Three-dimensional in vitro co-culture model of breast tumor using magnetic levitation. Sci Rep 4:6468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Daquinag AC, Souza GR, Kolonin MG (2013) Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles. Tissue Eng Part C Methods 19:336–344

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail G. Kolonin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Tseng, H., Daquinag, A.C., Souza, G.R., Kolonin, M.G. (2018). Three-Dimensional Magnetic Levitation Culture System Simulating White Adipose Tissue. In: Bunnell, B.A., Gimble, J.M. (eds) Adipose-Derived Stem Cells. Methods in Molecular Biology, vol 1773. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7799-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7799-4_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7797-0

  • Online ISBN: 978-1-4939-7799-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics