Skip to main content

Dynamic Management of Codon Compression for Saturation Mutagenesis

  • Protocol
  • First Online:
Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1772))

Abstract

Saturation mutagenesis is conveniently located between the two extremes of protein engineering, namely random mutagenesis, and rational design. It involves mutating a confined number of target residues to other amino acids, and hence requires knowledge regarding the sites for mutagenesis, but not their final identity. There are many different strategies for performing and designing such experiments, ranging from simple single degenerate codons to codon collections that code for distinct sets of amino acids. Here, we provide detailed information on the Dynamic Management for Codon Compression (DYNAMCC) approaches that allow us to precisely define the desired amino acid composition to be introduced to a specific target site. DYNAMCC allows us to set usage thresholds and to eliminate undesirable stop and wild-type codons, thus allowing us to control library size and subsequently downstream screening efforts. The DYNAMCC algorithms are free of charge and are implemented in a website for easy access and usage: www.dynamcc.com.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agudo R, Roiban G-D, Reetz MT (2012) Achieving regio- and enantioselectivity of P450-catalyzed oxidative CH activation of small functionalized molecules by structure-guided directed evolution. Chembiochem 13:1465–1473

    Article  CAS  PubMed  Google Scholar 

  2. Wilks HM, Hart KW, Feeney R et al (1988) A specific, highly active malate dehydrogenase by redesign of a lactate dehydrogenase framework. Science 242:1541–1544

    Article  CAS  PubMed  Google Scholar 

  3. Boehlein SK, Shaw JR, Stewart JD et al (2015) Enhancing the heat stability and kinetic parameters of the maize endosperm ADP-glucose pyrophosphorylase using iterative saturation mutagenesis. Arch Biochem Biophys 568:28–37

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Feng S, Zhan T et al (2013) Improving catalytic efficiency of endo-β-1, 4-xylanase from Geobacillus stearothermophilus by directed evolution and H179 saturation mutagenesis. J Biotechnol 168:341–347

    Article  CAS  PubMed  Google Scholar 

  5. Li L-L, McCorkle SR, Monchy S et al (2009) Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. Biotechnol Biofuels 2:10

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hicks MA, Prather KLJ (2014) Chapter 3: Bioprospecting in the genomic age. In: Sariaslani S, Gadd GM (eds) Advances in applied microbiology. Academic Press, New York, pp 111–146

    Google Scholar 

  7. Haitjema CH, Solomon KV, Henske JK et al (2014) Anaerobic gut fungi: advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnol Bioeng 111:1471–1482

    Article  CAS  PubMed  Google Scholar 

  8. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161

    Article  CAS  PubMed  Google Scholar 

  9. Urbarova I, Karlsen BO, Okkenhaug S et al (2012) Digital marine bioprospecting: mining new neurotoxin drug candidates from the transcriptomes of cold-water sea anemones. Mar Drugs 10:2265–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Adesioye FA, Makhalanyane TP, Biely P et al (2016) Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases. Enzym Microb Technol 93–94:79–91

    Article  Google Scholar 

  11. Muller HJ (1927) Artificial transmutation of the gene, Science 66:84–87

    Article  CAS  PubMed  Google Scholar 

  12. Stadler LJ (1928) Genetic effects of X-rays in maize. Proc Natl Acad Sci U S A 14:69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Promptov AN (1932) The effect of short ultra-violet rays on the appearance of hereditary variations in Drosophila melanogaster. J Genet 26:59–74

    Article  Google Scholar 

  14. Auerbach C (1949) Chemical induction of mutations. Hereditas 35:128–147

    Article  Google Scholar 

  15. Kaplan WD (1948) Formaldehyde as a mutagen in Drosophila. Science 108:43

    Article  CAS  PubMed  Google Scholar 

  16. Brockman HE, de Serres FJ, Ong T-M et al (1984) Mutation tests in Neurospora crassa: a report of the US environmental protection agency gene-tox program. Mutat Res 133:87–134

    Article  CAS  PubMed  Google Scholar 

  17. Sato S, Kitamoto D, Habe H (2014) Chemical mutagenesis of Gluconobacter frateurii to construct methanol-resistant mutants showing glyceric acid production from methanol-containing glycerol. J Biosci Bioeng 117:197–199

    Article  CAS  PubMed  Google Scholar 

  18. Shi M, Yue Z, Kuryatov A et al (2014) Identification of Redeye, a new sleep-regulating protein whose expression is modulated by sleep amount. Elife 3:e01473

    PubMed  PubMed Central  Google Scholar 

  19. Jankowicz-Cieslak J, Till BJ (2016) Chemical mutagenesis of seed and vegetatively propagated plants using EMS. In: Current protocols in plant biology. John Wiley & Sons, Inc., Hoboken, NJ

    Google Scholar 

  20. Cadwell RC, Joyce GF (1992) Randomization of genes by PCR mutagenesis. PCR Methods Appl 2:28–33

    Article  CAS  PubMed  Google Scholar 

  21. Camps M, Naukkarinen J, Johnson BP et al (2003) Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I. Proc Natl Acad Sci U S A 100:9727–9732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Crook N, Abatemarco J, Sun J et al (2016) In vivo continuous evolution of genes and pathways in yeast. Nat Commun 7:13051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bolon DN, Mayo SL (2001) Enzyme-like proteins by computational design. Proc Natl Acad Sci U S A 98:14274–14279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu Y, Yeung N, Sieracki N et al (2009) Design of functional metalloproteins. Nature 460:855–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nanda V, Koder RL (2010) Designing artificial enzymes by intuition and computation. Nat Chem 2:15–24

    Article  CAS  PubMed  Google Scholar 

  26. Richter F, Leaver-Fay A, Khare SD et al (2011) De novo enzyme design using Rosetta3. PLoS One 6:e19230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li X, Li P, Zhang Q et al (2012) Molecular characterization of monoclonal antibodies against aflatoxins: a possible explanation for the highest sensitivity. Anal Chem 84:5229–5235

    Article  CAS  PubMed  Google Scholar 

  28. Xu X, Chen J, Wang Q et al (2016) Mutagenesis of key residues in the binding center of l-aspartate-β-semialdehyde dehydrogenase from Escherichia coli enhances utilization of the cofactor NAD(H). Chembiochem 17:56–64

    Article  CAS  PubMed  Google Scholar 

  29. Cahn JKB, Baumschlager A, Brinkmann-Chen S et al (2016) Mutations in adenine-binding pockets enhance catalytic properties of NAD(P)H-dependent enzymes. Protein Eng Des Sel 29:31–38

    CAS  PubMed  Google Scholar 

  30. Miyazaki K, Arnold FH (1999) Exploring nonnatural evolutionary pathways by saturation mutagenesis: rapid improvement of protein function. J Mol Evol 49:716–720

    Article  CAS  PubMed  Google Scholar 

  31. Seeburg PH, Colby WW, Capon DJ et al (1984) Biological properties of human c-Ha-ras1 genes mutated at codon 12. Nature 312:71–75

    Article  CAS  PubMed  Google Scholar 

  32. Wells JA, Vasser M, Powers DB (1985) Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites. Gene 34:315–323

    Article  CAS  PubMed  Google Scholar 

  33. Schultz SC, Richards JH (1986) Site-saturation studies of beta-lactamase: production and characterization of mutant beta-lactamases with all possible amino acid substitutions at residue 71. Proc Natl Acad Sci U S A 83:1588–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cornish-Bowden A (1985) Nomenclature for incompletely specified bases in nucleic acid sequences: recommendations 1984. Nucleic Acids Res 13:3021–3030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Romero PA, Tran TM, Abate AR (2015) Dissecting enzyme function with microfluidic-based deep mutational scanning. Proc Natl Acad Sci U S A 112:7159–7164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pines G, Winkler JD, Pines A, et al (2017) Refactoring the genetic code for increased evolvability. MBio 8:e01654–17

    Article  PubMed  PubMed Central  Google Scholar 

  37. Balint RF, Larrick JW (1993) Antibody engineering by parsimonious mutagenesis. Gene 137:109–118

    Article  CAS  PubMed  Google Scholar 

  38. Reetz MT, Wu S (2008) Greatly reduced amino acid alphabets in directed evolution: making the right choice for saturation mutagenesis at homologous enzyme positions. Chem Commun (Camb) (43):5499–5501

    Google Scholar 

  39. Reetz MT, Kahakeaw D, Lohmer R (2008) Addressing the numbers problem in directed evolution. Chembiochem 9:1797–1804

    Article  CAS  PubMed  Google Scholar 

  40. Currin A, Swainston N, Day PJ et al (2015) Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 44:1172–1239

    Article  CAS  PubMed  Google Scholar 

  41. Firth AE, Patrick WM (2008) GLUE-IT and PEDEL-AA: new programmes for analyzing protein diversity in randomized libraries. Nucleic Acids Res 36:W281–W285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mena MA, Daugherty PS (2005) Automated design of degenerate codon libraries. Protein Eng Des Sel 18:559–561

    Article  CAS  PubMed  Google Scholar 

  43. Pines G, Pines A, Garst AD et al (2015) Codon compression algorithms for saturation mutagenesis. ACS Synth Biol 4:604–614

    Article  CAS  PubMed  Google Scholar 

  44. Halweg-Edwards AL, Pines G, Winkler JD et al (2016) A web interface for codon compression. ACS Synth Biol 5(9):1021–1023

    Article  CAS  PubMed  Google Scholar 

  45. Engqvist MKM, Nielsen J (2015) ANT: software for generating and evaluating degenerate codons for natural and expanded genetic codes. ACS Synth Biol 4(8):935–938

    Article  CAS  PubMed  Google Scholar 

  46. Tang L, Gao H, Zhu X et al (2012) Construction of “small-intelligent” focused mutagenesis libraries using well-designed combinatorial degenerate primers. Biotechniques 52:149–158

    CAS  PubMed  Google Scholar 

  47. Kille S, Acevedo-Rocha CG, Parra LP et al (2013) Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis. ACS Synth Biol 2:83–92

    Article  CAS  PubMed  Google Scholar 

  48. Zheng L, Baumann U, Reymond J-L (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32:e115

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hughes MD, Nagel DA, Santos AF et al (2003) Removing the redundancy from randomised gene libraries. J Mol Biol 331:973–979

    Article  CAS  PubMed  Google Scholar 

  50. Isaacs FJ, Carr PA, Wang HH et al (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333:348–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ostrov N, Landon M, Guell M et al (2016) Design, synthesis, and testing toward a 57-codon genome. Science 353:819–822

    Article  CAS  PubMed  Google Scholar 

  52. Kudla G, Murray AW, Tollervey D et al (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science 324:255–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Goodman DB, Church GM, Kosuri S (2013) Causes and effects of N-terminal codon bias in bacterial genes. Science 342:475–479

    Article  CAS  PubMed  Google Scholar 

  54. Nackley AG, Shabalina SA, Tchivileva IE et al (2006) Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314:1930–1933

    Article  CAS  PubMed  Google Scholar 

  55. Buhr F, Jha S, Thommen M et al (2016) Synonymous codons direct cotranslational folding toward different protein conformations. Mol Cell 61:341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kimchi-Sarfaty C, Oh JM, Kim I-W et al (2007) A “Silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315:525–528

    Article  CAS  PubMed  Google Scholar 

  57. Craig RA, Lu J, Luo J et al (2010) Optimizing nucleotide sequence ensembles for combinatorial protein libraries using a genetic algorithm. Nucleic Acids Res 38:e10

    Article  PubMed  Google Scholar 

  58. Wright S (1932) The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In: Proceedings of the sixth international congress of genetics

    Google Scholar 

  59. Romero PA, Arnold FH (2009) Exploring protein fitness landscapes by directed evolution. Nat Rev Mol Cell Biol 10:866–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Firnberg E, Labonte JW, Gray JJ et al (2014) A comprehensive, high-resolution map of a gene’s fitness landscape. Mol Biol Evol 31:1581–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Garst AD, Bassalo MC, Pines G et al (2016) Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nat Biotechnol 35(1):48–55

    Article  PubMed  Google Scholar 

  62. Jacquier H, Birgy A, Le Nagard H et al (2013) Capturing the mutational landscape of the beta-lactamase TEM-1. Proc Natl Acad Sci U S A 110:13067–13072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kitzman JO, Starita LM, Lo RS et al (2015) Massively parallel single-amino-acid mutagenesis. Nat Methods 12:203–206. 4 p following 206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Whitehead TA, Chevalier A, Song Y et al (2012) Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing. Nat Biotechnol 30:543–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. MacLean RC, Perron GG, Gardner A (2010) Diminishing returns from beneficial mutations and pervasive epistasis shape the fitness landscape for rifampicin resistance in Pseudomonas aeruginosa. Genetics 186:1345–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chou H-H, Chiu H-C, Delaney NF et al (2011) Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science 332:1190–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tokuriki N, Jackson CJ, Afriat-Jurnou L et al (2012) Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme. Nat Commun 3:1257

    Article  PubMed  Google Scholar 

  68. Toscano MD, Woycechowsky KJ, Hilvert D (2007) Minimalist active-site redesign: teaching old enzymes new tricks. Angew Chem Int Ed 46:3212–3236

    Article  CAS  Google Scholar 

  69. Goldsmith M, Aggarwal N, Ashani Y et al (2017) Overcoming an optimization plateau in the directed evolution of highly efficient nerve agent bioscavengers. Protein Eng Des Sel 30(4):333–345

    Article  PubMed  Google Scholar 

  70. McLachlan MJ, Johannes TW, Zhao H (2008) Further improvement of phosphite dehydrogenase thermostability by saturation mutagenesis. Biotechnol Bioeng 99:268–274

    Article  CAS  PubMed  Google Scholar 

  71. Li H-M, Mei L-H, Urlacher VB et al (2008) Cytochrome P450 BM-3 evolved by random and saturation mutagenesis as an effective indole-hydroxylating catalyst. Appl Biochem Biotechnol 144:27–36

    Article  CAS  PubMed  Google Scholar 

  72. Reetz MT (2004) Controlling the enantioselectivity of enzymes by directed evolution: practical and theoretical ramifications. Proc Natl Acad Sci U S A 101:5716–5722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Peimbert M, Segovia L (2003) Evolutionary engineering of a beta-Lactamase activity on a d-Ala d-Ala transpeptidase fold. Protein Eng 16:27–35

    Article  CAS  PubMed  Google Scholar 

  74. Firnberg E, Ostermeier M (2013) The genetic code constrains yet facilitates Darwinian evolution. Nucleic Acids Res 41:7420–7428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Toprak E, Veres A, Michel J-B et al (2012) Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat Genet 44:101–105

    Article  CAS  Google Scholar 

  76. Sharma SV, Bell DW, Settleman J et al (2007) Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7:169–181

    Article  CAS  PubMed  Google Scholar 

  77. Patrick WM, Firth AE (2005) Strategies and computational tools for improving randomized protein libraries. Biomol Eng 22:105–112

    Article  CAS  PubMed  Google Scholar 

  78. Reetz MT (2011) Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions. Angew Chem 50:138–174

    Article  CAS  Google Scholar 

  79. Patrick WM, Firth AE, Blackburn JM (2003) User-friendly algorithms for estimating completeness and diversity in randomized protein-encoding libraries. Protein Eng 16:451–457

    Article  CAS  PubMed  Google Scholar 

  80. Bosley AD, Ostermeier M (2005) Mathematical expressions useful in the construction, description and evaluation of protein libraries. Biomol Eng 22:57–61

    Article  CAS  PubMed  Google Scholar 

  81. Nov Y (2012) When second best is good enough: another probabilistic look at saturation mutagenesis. Appl Environ Microbiol 78:258–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hoebenreich S, Zilly FE, Acevedo-Rocha CG et al (2014) Speeding up directed evolution: combining the advantages of solid-phase combinatorial gene synthesis with statistically guided reduction of screening effort. ACS Synth Biol 4(3):317–331

    Article  PubMed  Google Scholar 

  83. Oh J-H, van Pijkeren J-P (2014) CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 42(17):e131

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ho SP, Britton DH, Stone BA et al (1996) Potent antisense oligonucleotides to the human multidrug resistance-1 mRNA are rationally selected by mapping RNA-accessible sites with oligonucleotide libraries. Nucleic Acids Res 24:1901–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Palfrey D, Picardo M, Hine AV (2000) A new randomization assay reveals unexpected elements of sequence bias in model “randomized” gene libraries: implications for biopanning. Gene 251:91–99

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank James Winkler, Marcelo Bassalo, and Wayne Patrick for insightful comments on the manuscript. This work was funded by the U.S. Department of Energy Grant No. DE-SC008812.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gur Pines .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pines, G., Gill, R.T. (2018). Dynamic Management of Codon Compression for Saturation Mutagenesis. In: Braman, J. (eds) Synthetic Biology. Methods in Molecular Biology, vol 1772. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7795-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7795-6_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7794-9

  • Online ISBN: 978-1-4939-7795-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics