Skip to main content

Sortase A-Assisted Metabolic Enzyme Ligation in Escherichia coli for Enhancing Metabolic Flux

  • Protocol
  • First Online:
Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1772))

Abstract

Metabolic engineering has been an important approach for microbial bio-production. To produce bio-chemicals with engineered microorganisms, metabolic pathways have been edited using several common strategies, including gene disruption, gene overexpression, and gene attenuation. Here, we demonstrated metabolic channeling based on enzymatic metabolic enzyme ligation as a noteworthy approach for enhancing a desired metabolic flux. To achieve metabolic channeling , the metabolic enzymes should be in close proximity in cells. In the literature, several methodologies have been recently applied to achieve metabolic channeling . Meanwhile, we have proposed a strategy for possessing metabolic enzymes in close proximity, by utilizing sortase A as a stapler to tether such enzymes in Escherichia coli. By tethering metabolic enzymes that catalyze the reactions before and after a target metabolite, the metabolic flux may be enhanced. This chapter describes the approach for enhancing acetate-producing flux by sortase-A-assisted metabolic ligation in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330:1355–1358

    Article  CAS  Google Scholar 

  2. Otero JM, Nielsen J (2010) Industrial systems biology. Biotechnol Bioeng 105:439–460

    Article  CAS  Google Scholar 

  3. Liu P, Zhu X, Tan Z, Zhang X, Ma Y (2016) Construction of Escherichia coli cell factories for production of organic acids and alcohols. Adv Biochem Eng Biotechnol 155:107–140

    PubMed  Google Scholar 

  4. Koppolu V, Vasigala VK (2016) Role of Escherichia coli in biofuel production. Microbiol Insights 9:29–35

    Article  Google Scholar 

  5. Chen X, Zhou L, Tian K, Kumar A, Singh S, Prior BA, Wang Z (2013) Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production. Biotechnol Adv 31:1200–1223

    Article  CAS  Google Scholar 

  6. Choi KR, Shin JH, Cho JS, Yang D, Lee SY (2016) Systems metabolic engineering of Escherichia coli. EcoSal Plus 7(1) https://doi.org/10.1128/ecosalplus.ESP-0010-2015

  7. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  Google Scholar 

  8. Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506–2514

    Article  CAS  Google Scholar 

  9. Yang J, Seo SW, Jang S, Shin SI, Lim CH, Roh TY, Jung GY (2013) Synthetic RNA devices to expedite the evolution of metabolite-producing microbes. Nat Commun 4:1413

    Article  Google Scholar 

  10. Kim SK, Han GH, Seong W, Kim H, Kim SW, Lee DH, Lee SG (2016) CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metab Eng 38:228–240

    Article  CAS  Google Scholar 

  11. Xu P, Li L, Zhang F, Stephanopoulos G, Koffas M (2014) Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci U S A 111:11299–11304

    Article  CAS  Google Scholar 

  12. Reizman IM, Stenger AR, Reisch CR, Gupta A, Connors NC, Prather KL (2015) Improvement of glucaric acid production in E. coli via dynamic control of metabolic fluxes. Metab Eng Commun 2:109–116

    Article  Google Scholar 

  13. Gupta A, Reizman IM, Reisch CR, Prather KL (2017) Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat Biotechnol 35:273–279

    Article  CAS  Google Scholar 

  14. Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759

    Article  CAS  Google Scholar 

  15. Moon TS, Dueber JE, Shiue E, Prather KL (2010) Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab Eng 12:298–305

    Article  CAS  Google Scholar 

  16. Sachdeva G, Garg A, Godding D, Way JC, Silver PA (2014) In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner. Nucleic Acids Res 42:9493–9503

    Article  CAS  Google Scholar 

  17. Lewicka AJ, Lyczakowski JJ, Blackhurst G, Pashkuleva C, Rothschild-Mancinelli K, Tautvaišas D, Thornton H, Villanueva H, Xiao W, Slikas J, Horsfall L, Elfick A, French C (2014) Fusion of pyruvate decarboxylase and alcohol dehydrogenase increases ethanol production in Escherichia coli. ACS Synth Biol 3:976–978

    Article  CAS  Google Scholar 

  18. Matsumoto T, Furuta K, Tanaka T, Kondo A (2016) Sortase A-mediated metabolic enzyme ligation in Escherichia coli. ACS Synth Biol 5:1284–1289

    Article  CAS  Google Scholar 

  19. Tanaka T, Kawabata H, Ogino C, Kondo A (2011) Creation of a cellooligosaccharide-assimilating Escherichia coli strain by displaying active beta-glucosidase on the cell surface via a novel anchor protein. Appl Environ Microbiol 77:6265–6270

    Article  CAS  Google Scholar 

  20. Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 25:1203–1210

    Article  CAS  Google Scholar 

  21. Tanaka T, Yamamoto T, Tsukiji S, Nagamune T (2008) Site-specific protein modification on living cells catalyzed by Sortase. Chembiochem 9:802–807

    Article  CAS  Google Scholar 

  22. Hirakawa H, Ishikawa S, Nagamune T (2015) Ca2+ −independent sortase-A exhibits high selective protein ligation activity in the cytoplasm of Escherichia coli. Biotechnol J 10:1487–1492

    Article  CAS  Google Scholar 

  23. Witte MD, Wu T, Guimaraes CP, Theile CS, Blom AE, Ingram JR, Li Z, Kundrat L, Goldberg SD, Ploegh HL (2015) Nat Protoc 10:508–516

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Special Coordination Funds for Promoting Science and Technology, Creation of Innovation Centers for Advanced Interdisciplinary Research Areas (Innovative Bioproduction Kobe), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Matsumoto, T., Tanaka, T., Kondo, A. (2018). Sortase A-Assisted Metabolic Enzyme Ligation in Escherichia coli for Enhancing Metabolic Flux. In: Braman, J. (eds) Synthetic Biology. Methods in Molecular Biology, vol 1772. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7795-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7795-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7794-9

  • Online ISBN: 978-1-4939-7795-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics