Skip to main content

Synthetic Biology with an All E. coli TXTL System: Quantitative Characterization of Regulatory Elements and Gene Circuits

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1772))

Abstract

Over the past decade, a new generation of cell-free transcription-translation (TXTL) systems has been devised for emerging multidisciplinary applications. The DNA-dependent in vitro protein synthesis technology has been developed to tackle applications in synthetic biology, biological and chemical engineering, as well as quantitative disciplines such as biophysics. In addition to being convenient at the biosafety level, the new TXTL platforms are user-friendly; more affordable; more versatile at the level of transcription, with a TX repertoire covering hundreds of parts; and more powerful, with protein production reaching a few mg/mL in batch and continuous modes. As a consequence, TXTL is rising up as a popular research tool and is used by a growing research community. While TXTL is proving reliable for an increasing number of applications, it is important to gain appropriate TXTL skills, especially for quantitative applications. TXTL has become particularly useful to rapidly prototype genetic devices , from single regulatory elements to elementary circuit motifs . In this chapter, we describe the basic procedures to develop appropriate TXTL practices for the characterization of such genetic parts. We use an all E. coli TXTL system developed in our lab, now commercialized by Arbor Biosciences under the name myTXTL.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Katzen F, Chang G, Kudlicki W (2005) The past, present and future of cell-free protein synthesis. Trends Biotechnol 23(3):150–156. https://doi.org/10.1016/j.tibtech.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  2. Hodgman CE, Jewett MC (2011) Cell-free synthetic biology: thinking outside the cell. Metab Eng. S1096-7176(11)00092-9 [pii] 14(3):261–269. https://doi.org/10.1016/j.ymben.2011.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Takahashi MK, Hayes CA, Chappell J, Sun ZZ, Murray RM, Noireaux V, Lucks JB (2015) Characterizing and prototyping genetic networks with cell-free transcription-translation reactions. Methods. https://doi.org/10.1016/j.ymeth.2015.05.020

  4. He M (2008) Cell-free protein synthesis: applications in proteomics and biotechnology. New Biotechnol 25(2–3):126–132. https://doi.org/10.1016/j.nbt.2008.08.004. S1871-6784(08)00072-1 [pii]

    Article  CAS  Google Scholar 

  5. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79(79):413–444. https://doi.org/10.1146/annurev.biochem.052308.105824

    Article  CAS  PubMed  Google Scholar 

  6. Daube SS, Arad T, Bar-Ziv R (2007) Cell-free co-synthesis of protein nanoassemblies: tubes, rings, and doughnuts. Nano Lett 7(3):638–641. https://doi.org/10.1021/nl062560n

    Article  CAS  PubMed  Google Scholar 

  7. Pardee K, Slomovic S, Nguyen PQ, Lee JW, Donghia N, Burrill D, Ferrante T, McSorley FR, Furuta Y, Vernet A, Lewandowski M, Boddy CN, Joshi NS, Collins JJ (2016) Portable, on-demand biomolecular manufacturing. Cell 167(1):248–259.e212. https://doi.org/10.1016/j.cell.2016.09.013

    Article  CAS  PubMed  Google Scholar 

  8. Noireaux V, Bar-Ziv R, Libchaber A (2003) Principles of cell-free genetic circuit assembly. Proc Natl Acad Sci U S A 100(22):12672–12677. https://doi.org/10.1073/pnas.2135496100. 2135496100 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shin J, Noireaux V (2012) An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synth Biol 1(1):29–41. https://doi.org/10.1021/sb200016s

    Article  CAS  PubMed  Google Scholar 

  10. Garamella J, Marshall R, Rustad M, Noireaux V (2016) The all E. coli TX-TL toolbox 2.0: a platform for cell-free synthetic biology. ACS Synth Biol. https://doi.org/10.1021/acssynbio.5b00296

  11. Sun ZZ, Yeung E, Hayes CA, Noireaux V, Murray RM (2014) Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Synth Biol 3(6):387–397. https://doi.org/10.1021/Sb400131a

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi MK, Chappell J, Hayes CA, Sun ZZ, Kim J, Singhal V, Spring KJ, Al-Khabouri S, Fall CP, Noireaux V, Murray RM, Lucks JB (2015) Rapidly characterizing the fast dynamics of RNA genetic circuitry with cell-free transcription-translation (TX-TL) systems. ACS Synth Biol 4(5):503–515. https://doi.org/10.1021/sb400206c

    Article  CAS  PubMed  Google Scholar 

  13. Karzbrun E, Tayar AM, Noireaux V, Bar-Ziv RH (2014) Programmable on-chip DNA compartments as artificial cells. Science 345(6198):829–832. https://doi.org/10.1126/Science.1255550

    Article  CAS  PubMed  Google Scholar 

  14. Tayar AKE, Noireaux V, Bar-Ziv R (2015) Propagating gene expression fronts in a one-dimensional coupled system of artificial cells. Nat Phys. https://doi.org/10.1038/NPHYS3469

  15. Niederholtmeyer H, Sun ZZ, Hori Y, Yeung E, Verpoorte A, Murray RM, Maerkl SJ (2015) Rapid cell-free forward engineering of novel genetic ring oscillators. eLife 4. https://doi.org/10.7554/eLife.09771

  16. Kigawa T, Yabuki T, Matsuda N, Matsuda T, Nakajima R, Tanaka A, Yokoyama S (2004) Preparation of Escherichia coli cell extract for highly productive cell-free protein expression. J Struct Funct Genom 5(1–2):63–68. https://doi.org/10.1023/B:JSFG.0000029204.57846.7d

    Article  CAS  Google Scholar 

  17. Calhoun KA, Swartz JR (2005) An economical method for cell-free protein synthesis using glucose and nucleoside monophosphates. Biotechnol Prog 21(4):1146–1153. https://doi.org/10.1021/bp050052y

    Article  CAS  PubMed  Google Scholar 

  18. Spirin AS, Swartz JR (2008) Cell-free protein synthesis: methods and protocols. Wiley-VCH, Weinheim

    Google Scholar 

  19. Shin J, Jardine P, Noireaux V (2012) Genome replication, synthesis, and assembly of the bacteriophage T7 in a single cell-free reaction. ACS Synth Biol 1(9):408–413. https://doi.org/10.1021/Sb300049p

    Article  CAS  PubMed  Google Scholar 

  20. Ishikawa K, Sato K, Shima Y, Urabe I, Yomo T (2004) Expression of a cascading genetic network within liposomes. FEBS Lett 576(3):387–390. https://doi.org/10.1016/j.febslet.2004.09.046. S0014579304011743 [pii]

    Article  CAS  PubMed  Google Scholar 

  21. Noireaux V, Libchaber A (2004) A vesicle bioreactor as a step toward an artificial cell assembly. Proc Natl Acad Sci U S A 101(51):17669–17674. https://doi.org/10.1073/pnas.0408236101. 0408236101 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Swartz J (2006) Developing cell-free biology for industrial applications. J Ind Microbiol Biotechnol 33(7):476–485. https://doi.org/10.1007/s10295-006-0127-y

    Article  CAS  PubMed  Google Scholar 

  23. Pardee K, Green AA, Ferrante T, Cameron DE, DaleyKeyser A, Yin P, Collins JJ (2014) Paper-based synthetic gene networks. Cell 159(4):940–954. https://doi.org/10.1016/j.cell.2014.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chemla Y, Ozer E, Schlesinger O, Noireaux V, Alfonta L (2015) Genetically expanded cell-free protein synthesis using endogenous pyrrolysyl orthogonal translation system. Biotechnol Bioeng 112(8):1663–1672. https://doi.org/10.1002/bit.25587

    Article  CAS  PubMed  Google Scholar 

  25. Iwane Y, Hitomi A, Murakami H, Katoh T, Goto Y, Suga H (2016) Expanding the amino acid repertoire of ribosomal polypeptide synthesis via the artificial division of codon boxes. Nat Chem 8(4):317–325. https://doi.org/10.1038/NCHEM.2446

    Article  CAS  PubMed  Google Scholar 

  26. Hong SH, Kwon YC, Jewett MC (2014) Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis. Front Chem 2. https://doi.org/10.3389/Fchem.2014.00034. Artn 34

  27. Shin J, Noireaux V (2010) Efficient cell-free expression with the endogenous E. coli RNA polymerase and sigma factor 70. J Biol Eng 4:8

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shin J, Noireaux V (2010) Study of messenger RNA inactivation and protein degradation in an Escherichia coli cell-free expression system. J Biol Eng 4:9. https://doi.org/10.1186/1754-1611-4-9. 1754-1611-4-9 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Enz S, Braun V, Crosa JH (1995) Transcription of the region encoding the ferric dicitrate-transport system in Escherichia coli: similarity between promoters for fecA and for extracytoplasmic function sigma factors. Gene 163(1):13–18. doi:037811199500380O [pii]

    Article  CAS  PubMed  Google Scholar 

  30. Lipinska B, Sharma S, Georgopoulos C (1988) Sequence analysis and regulation of the htrA gene of Escherichia coli: a sigma 32-independent mechanism of heat-inducible transcription. Nucleic Acids Res 16(21):10053–10067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arnosti DN, Chamberlin MJ (1989) Secondary sigma-factor controls transcription of flagellar and chemotaxis genes in Escherichia-coli. Proc Natl Acad Sci USA 86(3):830–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, deHaseth PL (2003) Sigma 32-dependent promoter activity in vivo: sequence determinants of the groE promoter. J Bacteriol 185(19):5800–5806. https://doi.org/10.1128/Jb.185.19.5800-5806.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yim HH, Brems RL, Villarejo M (1994) Molecular characterization of the promoter of Osmy, an Rpos-dependent gene. J Bacteriol 176(1):100–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reitzer LJ, Magasanik B (1985) Expression of Glna in Escherichia-Coli is regulated at tandem promoters. Proc Natl Acad Sci USA 82(7):1979–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I-1-I-2 regulatory elements. Nucleic Acids Res 25(6):1203–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Olins PO, Devine CS, Rangwala SH, Kavka KS (1988) The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. Gene 73(1):227–235. doi:0378-1119(88)90329-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  37. Larson MH, Greenleaf WJ, Landick R, Block SM (2008) Applied force reveals mechanistic and energetic details of transcription termination. Cell 132(6):971–982. https://doi.org/10.1016/j.cell.2008.01.027. S0092-8674(08)00127-X [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Flynn JM, Neher SB, Kim YI, Sauer RT, Baker TA (2003) Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 11(3):671–683. doi:S1097276503000601 [pii]

    Article  CAS  PubMed  Google Scholar 

  39. Marshall R, Maxwell C, Collins SP, Jacobsen T, Luo ML, Begemann MB, Gray BN, January E, Singer A, He Y, Beisel CL, Noireaux V (2018) Rapid and scalable characterization of CRISPR technologies using an E. coli cell-free transcription-translation system. Mol Cell. 69:146–157. https://doi.org/10.1016/j.molcel.2017.12.007

  40. Caschera F, Noireaux V (2014) Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system. Biochimie 99:162–168. https://doi.org/10.1016/j.biochi.2013.11.025

    Article  CAS  PubMed  Google Scholar 

  41. Sun ZZ, Hayes CA, Shin J, Caschera F, Murray RM, Noireaux V (2013) Protocols for implementing an Escherichia coli based TX-TL cell-free expression system for synthetic biology. J Vis Exp 79:e50762. https://doi.org/10.3791/50762

    Article  CAS  Google Scholar 

  42. Caschera F, Noireaux V (2015) Preparation of amino acid mixtures for cell-free expression systems. BioTechniques 58(1):40–43. https://doi.org/10.2144/000114249

    Article  CAS  PubMed  Google Scholar 

  43. Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D (2008) Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics 9:102. https://doi.org/10.1186/1471-2164-9-102. 1471-2164-9-102 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marshall R, Maxwell CS, Collins SP, Beisel CL, Noireaux V (2017)Short DNA containing chisites enhances DNA stability and gene expression in E. coli cell-free transcription-translation systems. Biotechnol Bioeng. https://doi.org/10.1002/bit.26333

  45. Kelwick R, Webb AJ, MacDonald JT, Freemont PS (2016) Development of a Bacillus subtilis cell-free transcription-translation system for prototyping regulatory elements. Metab Eng 38:370–381. https://doi.org/10.1016/j.ymben.2016.09.008

    Article  CAS  PubMed  Google Scholar 

  46. Gan R, Jewett MC (2014) A combined cell-free transcription-translation system from Saccharomyces cerevisiae for rapid and robust protein synthesis. Biotechnol J 9(5):641–651. https://doi.org/10.1002/biot.201300545

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the Defense Advanced Research Projects Agency (contract HR0011-16-C-01-34) and the Office of Naval Research (award N00014-13-1-0074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Noireaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marshall, R., Noireaux, V. (2018). Synthetic Biology with an All E. coli TXTL System: Quantitative Characterization of Regulatory Elements and Gene Circuits. In: Braman, J. (eds) Synthetic Biology. Methods in Molecular Biology, vol 1772. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7795-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7795-6_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7794-9

  • Online ISBN: 978-1-4939-7795-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics