Skip to main content

DNA Assembly with the DATEL Method

  • Protocol
  • First Online:
Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1772))

Abstract

Simple and reliable DNA assembly methods have become a critical technique in synthetic biology. Here, we present a protocol of the recently developed DATEL (scarless and sequence-independent DNA assembly method using thermostable exonuclease and ligase) method for the construction of genetic circuits and biological pathways from multiple DNA parts in one tube. DATEL is expected to be an applicable choice for both manual and automated high-throughput assembly of DNA fragments, which will greatly facilitate the rapid progress of synthetic biology and metabolic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellis T, Adie T, Baldwin GS (2011) DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol (Camb) 3:109–118

    Article  CAS  Google Scholar 

  2. Canton B, Labno A, Endy D (2008) Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 26:787–793

    Article  CAS  PubMed  Google Scholar 

  3. Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A 70:3240–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4:e5553

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sarrion-Perdigones A, Falconi EE, Zandalinas SI, Juarez P, Fernandez-del-Carmen A, Granell A, Orzaez D (2011) GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6:e21622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kodumal SJ, Patel KG, Reid R, Menzella HG, Welch M, Santi DV (2004) Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc Natl Acad Sci U S A 101:15573–15578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS One 6:e16765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4:251–256

    Article  CAS  PubMed  Google Scholar 

  9. Quan JY, Tian JD (2011) Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc 6:242–251

    Article  CAS  PubMed  Google Scholar 

  10. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

  11. Sleight SC, Bartley BA, Lieviant JA, Sauro HM (2010) In-fusion BioBrick assembly and re-engineering. Nucleic Acids Res 38:2624–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang RY, Shi ZY, Guo YY, Chen JC, Chen GQ (2013) DNA fragments assembly based on nicking enzyme system. PLoS One 8:e57943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kang Z, Zhang J, Jin P, Yang S (2015) Directed evolution combined with synthetic biology strategies expedite semi-rational engineering of genes and genomes. Bioengineered 6:136–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smanski MJ, Bhatia S, Zhao D, Park Y, BAW L, Giannoukos G, Ciulla D, Busby M, Calderon J, Nicol R (2014) Functional optimization of gene clusters by combinatorial design and assembly. Nat Biotechnol 32:1241–1249

    Article  CAS  PubMed  Google Scholar 

  15. Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, Montague MG, Venter JC, Smith HO, Hutchison CA (2008) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic mycoplasma genitalium genome. Proc Natl Acad Sci U S A 105:20404–20409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin QH, Jia B, Mitchell LA, Luo JC, Yang K, Zeller KI, Zhang WQ, Xu ZW, Stracquadanio G, Bader JS, Boeke JD, Yuan YJ (2015) RADOM, an efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces Cerevisiae. ACS Synth Biol 4:213–220

    Article  CAS  PubMed  Google Scholar 

  17. Shao ZY, Zhao H, Zhao HM (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37:e16

    Article  PubMed  Google Scholar 

  18. Zhou JT, Wu RH, Xue XL, Qin ZJ (2016) CasHRA (Cas9-facilitated homologous recombination assembly) method of constructing megabase-sized DNA. Nucleic Acids Res 44:e124

    Article  PubMed  PubMed Central  Google Scholar 

  19. Itaya M, Fujita K, Kuroki A, Tsuge K (2008) Bottom-up genome assembly using the Bacillus Subtilis genome vector. Nat Methods 5:41–43

    Article  CAS  PubMed  Google Scholar 

  20. Jin P, Ding W, Du G, Chen J, Kang Z (2016) DATEL: a scarless and sequence-independent DNA assembly method using thermostable exonucleases and ligase. ACS Synth Biol 5:1028–1032. https://doi.org/10.1021/acssynbio.6b00078

    Article  CAS  PubMed  Google Scholar 

  21. Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88:7276–7280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lyamichev V, Brow MAD, Dahlberg JE (1993) Structure-specific endonucleolytic cleavage of nucleic-acids by eubacterial DNA-polymerases. Science 260:778–783

    Article  CAS  PubMed  Google Scholar 

  23. Breslauer KJ, Frank R, Blöcker H, Marky LA (1986) Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A 83:3746–3750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (31670092), the Fundamental Research Funds for the Central Universities (JUSRP51707A), and Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kang, Z., Ding, W., Jin, P., Du, G., Chen, J. (2018). DNA Assembly with the DATEL Method. In: Braman, J. (eds) Synthetic Biology. Methods in Molecular Biology, vol 1772. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7795-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7795-6_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7794-9

  • Online ISBN: 978-1-4939-7795-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics