Skip to main content

Targeted Gene Knock Out Using Nuclease-Assisted Vector Integration: Hemi- and Homozygous Deletion of JAG1

  • Protocol
  • First Online:
Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1772))

Abstract

Gene editing technologies are revolutionizing fields such as biomedicine and biotechnology by providing a simple means to manipulate the genetic makeup of essentially any organism. Gene editing tools function by introducing double-stranded breaks at targeted sites within the genome, which the host cells repair preferentially by Non-Homologous End Joining. While the technologies to introduce double-stranded breaks have been extensively optimized, this progress has not been matched by the development of methods to integrate heterologous DNA at the target sites or techniques to detect and isolate cells that harbor the desired modification. We present here a technique for rapid introduction of vectors at target sites in the genome that enables efficient isolation of successfully edited cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188(4):773–782. https://doi.org/10.1534/genetics.111.131433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rahman SH, Maeder ML, Joung JK, Cathomen T (2011) Zinc-finger nucleases for somatic gene therapy: the next frontier. Hum Gene Ther 22(8):925–933. https://doi.org/10.1089/hum.2011.087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11(9):636–646. https://doi.org/10.1038/nrg2842

    Article  CAS  PubMed  Google Scholar 

  4. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512. https://doi.org/10.1126/science.1178811

    Article  CAS  PubMed  Google Scholar 

  5. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82. https://doi.org/10.1093/nar/gkr218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501–1501. https://doi.org/10.1126/science.1178817

    Article  CAS  PubMed  Google Scholar 

  7. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. Elife 2:e00471. https://doi.org/10.7554/eLife.00471

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. https://doi.org/10.1126/science.1258096

    Article  CAS  PubMed  Google Scholar 

  11. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wright AV, Nunez JK, Doudna JA (2016) Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164(1–2):29–44. https://doi.org/10.1016/j.cell.2015.12.035

    Article  CAS  PubMed  Google Scholar 

  13. Brown A, Woods WS, Perez-Pinera P (2017) Targeted gene activation using RNA-guided nucleases. Methods Mol Biol 1468:235–250. https://doi.org/10.1007/978-1-4939-4035-6_16

    Article  CAS  PubMed  Google Scholar 

  14. Perez-Pinera P, Ousterout DG, Gersbach CA (2012) Advances in targeted genome editing. Curr Opin Chem Biol 16(3–4):268–277. https://doi.org/10.1016/j.cbpa.2012.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Connelly JP, Barker JC, Pruett-Miller S, Porteus MH (2010) Gene correction by homologous recombination with zinc finger nucleases in primary cells from a mouse model of a generic recessive genetic disease. Mol Ther 18(6):1103–1110. https://doi.org/10.1038/mt.2010.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, Carte J, Chen W, Roark N, Ranganathan S, Ravinder N, Chesnut JD (2015) Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 208:44–53. https://doi.org/10.1016/j.jbiotec.2015.04.024

    Article  CAS  PubMed  Google Scholar 

  17. Yu X, Liang X, Xie H, Kumar S, Ravinder N, Potter J, de Mollerat du Jeu X, Chesnut JD (2016) Improved delivery of Cas9 protein/gRNA complexes using lipofectamine CRISPRMAX. Biotechnol Lett 38(6):919–929. https://doi.org/10.1007/s10529-016-2064-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carroll D (2014) Genome engineering with targetable nucleases. Annu Rev Biochem 83:409–439. https://doi.org/10.1146/annurev-biochem-060713-035418

    Article  CAS  PubMed  Google Scholar 

  19. Byrne SM, Ortiz L, Mali P, Aach J, Church GM (2014) Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res 43(3):e21. https://doi.org/10.1093/nar/gku1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. TO A, Duroure K, De Cian A, Concordet JP, Del Bene F (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24(1):142–153. https://doi.org/10.1101/gr.161638.113

    Article  CAS  Google Scholar 

  21. Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M, Daimon T, Sezutsu H, Yamamoto T, Sakuma T, Suzuki KT (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5:5560. https://doi.org/10.1038/ncomms6560

    Article  CAS  PubMed  Google Scholar 

  22. Kimura Y, Oda M, Nakatani T, Sekita Y, Monfort A, Wutz A, Mochizuki H, Nakano T (2015) CRISPR/Cas9-mediated reporter knock-in in mouse haploid embryonic stem cells. Sci Rep 5:10710. https://doi.org/10.1038/srep10710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sakuma T, Takenaga M, Kawabe Y, Nakamura T, Kamihira M, Yamamoto T (2015) Homologous recombination-independent large gene cassette knock-in in CHO cells using TALEN and MMEJ-directed donor plasmids. Int J Mol Sci 16(10):23849–23866. https://doi.org/10.3390/ijms161023849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lackner DH, Carre A, Guzzardo PM, Banning C, Mangena R, Henley T, Oberndorfer S, Gapp BV, Nijman SM, Brummelkamp TR, Burckstummer T (2015) A generic strategy for CRISPR-Cas9-mediated gene tagging. Nat Commun 6:10237. https://doi.org/10.1038/ncomms10237

    Article  CAS  PubMed  Google Scholar 

  25. Sakuma T, Nakade S, Sakane Y, Suzuki KT, Yamamoto T (2016) MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc 11(1):118–133. https://doi.org/10.1038/nprot.2015.140

    Article  CAS  PubMed  Google Scholar 

  26. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33(2):187–197. https://doi.org/10.1038/nbt.3117

    Article  CAS  PubMed  Google Scholar 

  27. Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z, Kurita M, Hishida T, Li M, Aizawa E, Guo S, Chen S, Goebl A, Soligalla RD, Qu J, Jiang T, Fu X, Jafari M, Esteban CR, Berggren WT, Lajara J, Nunez-Delicado E, Guillen P, Campistol JM, Matsuzaki F, Liu GH, Magistretti P, Zhang K, Callaway EM, Zhang K, Belmonte JC (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540(7631):144–149. https://doi.org/10.1038/nature20565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brown A, Woods WS, Perez-Pinera P (2016) Multiplexed targeted genome engineering using a universal nuclease-assisted vector integration system. ACS Synth Biol. https://doi.org/10.1021/acssynbio.6b00056

  29. McVey M, Lee SE (2008) MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet 24(11):529–538. https://doi.org/10.1016/j.tig.2008.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nussenzweig A, Nussenzweig MC (2007) A backup DNA repair pathway moves to the forefront. Cell 131(2):223–225. https://doi.org/10.1016/j.cell.2007.10.005

    Article  CAS  PubMed  Google Scholar 

  31. D’Souza B, Meloty-Kapella L, Weinmaster G (2010) Canonical and non-canonical Notch ligands. Curr Top Dev Biol 92:73–129. https://doi.org/10.1016/S0070-2153(10)92003-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bray SJ (2016) Notch signalling in context. Nat Rev Mol Cell Biol 17(11):722–735. https://doi.org/10.1038/nrm.2016.94

    Article  CAS  PubMed  Google Scholar 

  33. Penton AL, Leonard LD, Spinner NB (2012) Notch signaling in human development and disease. Semin Cell Dev Biol 23(4):450–457. https://doi.org/10.1016/j.semcdb.2012.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li L, Krantz ID, Deng Y, Genin A, Banta AB, Collins CC, Qi M, Trask BJ, Kuo WL, Cochran J, Costa T, Pierpont ME, Rand EB, Piccoli DA, Hood L, Spinner NB (1997) Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet 16(3):243–251. https://doi.org/10.1038/ng0797-243

    Article  CAS  PubMed  Google Scholar 

  35. Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A, Piccoli DA, Meltzer PS, Spinner NB, Collins FS, Chandrasekharappa SC (1997) Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet 16(3):235–242. https://doi.org/10.1038/ng0797-235

    Article  CAS  PubMed  Google Scholar 

  36. Benchling (2015) Biology software

    Google Scholar 

  37. Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32(12):1262–1267. https://doi.org/10.1038/nbt.3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832. https://doi.org/10.1038/nbt.2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Perez-Pinera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gapinske, M., Tague, N., Winter, J., Underhill, G.H., Perez-Pinera, P. (2018). Targeted Gene Knock Out Using Nuclease-Assisted Vector Integration: Hemi- and Homozygous Deletion of JAG1. In: Braman, J. (eds) Synthetic Biology. Methods in Molecular Biology, vol 1772. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7795-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7795-6_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7794-9

  • Online ISBN: 978-1-4939-7795-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics