Skip to main content

Combinatorial Evolution of DNA with RECODE

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1772))

Abstract

In past decades, DNA engineering protocols have led to the rapid development of synthetic biology. To engineer the natural proteins, many directed evolution methods based on molecular biology have been presented for generating genetic diversity or obtaining specific properties. Here, we provide a simple (PCR operation), efficient (larger amount of products), and powerful (multiple point mutations, deletions, insertions, and combinatorial multipoint mutagenesis) RECODE method, which is capable of reediting the target DNA flexibly to restructure regulatory regions and remodel enzymes by using the combined function of the thermostable DNA polymerase and DNA ligase in one pot. RECODE is expected to be an applicable choice to create diverse mutant libraries for rapid evolution and optimization of enzymes and synthetic pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185–194

    Article  CAS  PubMed  Google Scholar 

  2. Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths-biocatalysis in industrial synthesis. Science 299:1694–1697

    Article  CAS  PubMed  Google Scholar 

  3. Lu TK, Khalil AS, Collins JJ (2009) Next-generation synthetic gene networks. Nat Biotechnol 27:1139–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carr PA, Church GM (2009) Genome engineering. Nat Biotechnol 27:1151–1162

    Article  CAS  PubMed  Google Scholar 

  5. Dalby PA (2011) Strategy and success for the directed evolution of enzymes. Curr Opin Struct Biol 21:473–480

    Article  CAS  PubMed  Google Scholar 

  6. Johannes TW, Zhao HM (2006) Directed evolution of enzymes and biosynthetic pathways. Curr Opin Microbiol 9:261–267

    Article  CAS  PubMed  Google Scholar 

  7. Romero PA, Arnold FH (2009) Exploring protein fitness landscapes by directed evolution. Nat Rev Mol Cell Biol 10:866–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stemmer WPC (1994) Rapid evolution of a protein in-vitro by DNA shuffling. Nature 370:389–391

    Article  CAS  PubMed  Google Scholar 

  9. Zhao HM, Giver L, Shao ZX, Affholter JA, Arnold FH (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol 16:258–261

    Article  CAS  PubMed  Google Scholar 

  10. Shao ZX, Zhao HM, Giver L, Arnold FH (1998) Random-priming in vitro recombination: an effective tool for directed evolution. Nucleic Acids Res 26:681–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coco WM, Levinson WE, Crist MJ, Hektor HJ, Darzins A, Pienkos PT, Squires CH, Monticello DJ (2001) DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol 19:354–359

    Article  CAS  PubMed  Google Scholar 

  12. Ness JE, Kim S, Gottman A, Pak R, Krebber A, Borchert TV, Govindarajan S, Mundorff EC, Minshull J (2002) Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently. Nat Biotechnol 20:1251–1255

    Article  CAS  PubMed  Google Scholar 

  13. Ostermeier M, Shim JH, Benkovic SJ (1999) A combinatorial approach to hybrid enzymes independent of DNA homology. Nat Biotechnol 17:1205–1209

    Article  CAS  PubMed  Google Scholar 

  14. Sieber V, Martinez CA, Arnold FH (2001) Libraries of hybrid proteins from distantly related sequences. Nat Biotechnol 19:456–460

    Article  CAS  PubMed  Google Scholar 

  15. Herman A, Tawfik DS (2007) Incorporating synthetic oligonucleotides via gene reassembiv (ISOR): a versatile tool for generating targeted libraries. Protein Eng Des Sel 20:219–226

    Article  CAS  PubMed  Google Scholar 

  16. Stemmer WPC (1994) DNA shuffling by random fragmentation and reassembly in-vitro recombination for molecular evolution. Proc Natl Acad Sci U S A 91:10747–10751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crameri A, Stemmer WPC (1995) Combinatorial multiple cassette mutagenesis creates all the permutations of mutant and wild-type sequences. Biotechniques 18:194–196

    CAS  PubMed  Google Scholar 

  18. Reetz MT, Wilensek S, Zha DX, Jaeger KE (2001) Directed evolution of an enantioselective enzyme through combinatorial multiple-cassette mutagenesis. Angew Chem Int Ed Engl 40:3589–3591

    Article  CAS  PubMed  Google Scholar 

  19. Bloom JD (2014) An experimentally determined evolutionary model dramatically improves phylogenetic fit. Mol Biol Evol 31:1956–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hidalgo A, Schliessmann A, Molina R, Hermoso J, Bornscheuer UT (2008) A one-pot, simple methodology for cassette randomisation and recombination for focused directed evolution. Protein Eng Des Sel 21:567–576

    Article  CAS  PubMed  Google Scholar 

  21. Reetz MT, Carballeira JD (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2:891–903

    Article  CAS  PubMed  Google Scholar 

  22. Jain PC, Varadarajan R (2014) A rapid, efficient, and economical inverse polymerase chain reaction-based method for generating a site saturation mutant library. Anal Biochem 449:90–98

    Article  CAS  PubMed  Google Scholar 

  23. Seyfang A, Jin JHQ (2004) Multiple site-directed mutagenesis of more than 10 sites simultaneously and in a single round. Anal Biochem 324:285–291

    Article  CAS  PubMed  Google Scholar 

  24. Young L, Dong QH (2003) TAMS technology for simple and efficient in vitro site-directed mutagenesis and mutant screening. Nucleic Acids Res 31:e11

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sawano A, Miyawaki A (2000) Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis. Nucleic Acids Res 28:E78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Packer MS, Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genet 16:379–394

    Article  CAS  PubMed  Google Scholar 

  27. Coussement P, Maertens J, Beauprez J, Van Bellegem W, De Mey M (2014) One step DNA assembly for combinatorial metabolic engineering. Metab Eng 23:70–77

    Article  CAS  PubMed  Google Scholar 

  28. Kunkel TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A 82:488–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Firnberg E, Ostermeier M (2012) PFunkel: efficient, expansive, user-defined mutagenesis. PLoS One 7:e52031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A 102:12678–12683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KLJ, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759

    Article  CAS  PubMed  Google Scholar 

  33. Pfleger BF, Pitera DJ, D Smolke C, Keasling JD (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24:1027–1032

    Article  CAS  PubMed  Google Scholar 

  34. Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30:354–359

    Article  CAS  PubMed  Google Scholar 

  35. Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330:70–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu P, Gu Q, Wang W, Wong L, Bower AGW, Collins CH, Koffas MAG (2013) Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun 4:1409

    Article  PubMed  Google Scholar 

  37. Du J, Yuan Y, Si T, Lian J, Zhao H (2012) Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res 40:e142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 31:170–174

    Article  CAS  PubMed  Google Scholar 

  39. Kang Z, Wang X, Li Y, Wang Q, Qi Q (2012) Small RNA RyhB as a potential tool used for metabolic engineering in Escherichia coli. Biotechnol Lett 34:527–531

    Article  CAS  PubMed  Google Scholar 

  40. Lee SY, Kim HU (2015) Systems strategies for developing industrial microbial strains. Nat Biotechnol 33:1061–1072

    Article  CAS  PubMed  Google Scholar 

  41. Dai Z, Nielsen J (2015) Advancing metabolic engineering through systems biology of industrial microorganisms. Curr Opin Biotechnol 36:8–15

    Article  PubMed  Google Scholar 

  42. Jin P, Kang Z, Zhang J, Zhang L, Du G, Chen J (2016) Combinatorial evolution of enzymes and synthetic pathways using one-otep PCR. ACS Synth Biol 5:259–268

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (31670092), the Fundamental Research Funds for the Central Universities (JUSRP51707A), and Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kang, Z., Ding, W., Jin, P., Du, G., Chen, J. (2018). Combinatorial Evolution of DNA with RECODE. In: Braman, J. (eds) Synthetic Biology. Methods in Molecular Biology, vol 1772. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7795-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7795-6_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7794-9

  • Online ISBN: 978-1-4939-7795-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics