Advertisement

Inkjet Printing for Biomedical Applications

  • Christopher Chi Wai Tse
  • Patrick J. Smith
Part of the Methods in Molecular Biology book series (MIMB, volume 1771)

Abstract

Inkjet printing can deposit politer volumes of a specified ink at precise locations on a substrate. Here we describe methods of using inkjet printing for cell patterning in the field of biomedical applications, either directly printing cells in cell media, or indirectly through printing a wax scaffold that guides cell orientation/attachment onto a substrate.

Key words

Cell printing Bioprinting Inkjet printing Cell lines Primary cells Neuronal cells Wax 

References

  1. 1.
    Nesic D, Whiteside R, Brittberg M et al (2006) Cartilage tissue engineering for degenerative joint disease. Adv Drug Deliv Rev 58:300–322.  https://doi.org/10.1016/j.addr.2006.01.012CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bannasch H, Föhn M, Unterberg T et al (2003) Skin tissue engineering. Chirurg 74:802–807.  https://doi.org/10.1007/s00104-003-0725-4CrossRefGoogle Scholar
  3. 3.
    Théry M (2010) Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci 123:4201–4213.  https://doi.org/10.1242/jcs.075150CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kumar S, LeDuc PR (2009) Dissecting the molecular basis of the mechanics of living cells. Exp Mech 49:11–23.  https://doi.org/10.1007/s11340-007-9063-7CrossRefGoogle Scholar
  5. 5.
    Chen CS, Mrksich M, Huang S et al (1997) Geometric control of cell life and death. Science 276:1425–1428.  https://doi.org/10.1126/science.276.5317.1425CrossRefGoogle Scholar
  6. 6.
    Dike LE, Chen CS, Mrksich M et al (1999) Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell Dev Biol Anim 35:441–448.  https://doi.org/10.1007/s11626-999-0050-4CrossRefGoogle Scholar
  7. 7.
    McBeath R, Pirone DM, Nelson CM et al (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495.  https://doi.org/10.1016/S1534-5807(04)00075-9CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Banerjee S, Sknepnek R, Marchetti MC (2014) Optimal shapes and stresses of adherent cells on patterned substrates. Soft Matter 10:2424–2430.  https://doi.org/10.1039/c3sm52647jCrossRefGoogle Scholar
  9. 9.
    Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10:21–33.  https://doi.org/10.1038/nrm2593CrossRefPubMedGoogle Scholar
  10. 10.
    Duclos G, Garcia S, Yevick HG, Silberzan P (2014) Perfect nematic order in confined monolayers of spindle-shaped cells. Soft Matter 10:2346–2353.  https://doi.org/10.1039/c3sm52323cCrossRefPubMedGoogle Scholar
  11. 11.
    Zhang Y, Tse C, Rouholamin D, Smith PJ (2012) Scaffolds for tissue engineering produced by inkjet printing. Cent Eur J Eng 2:325–335.  https://doi.org/10.2478/s13531-012-0016-2CrossRefGoogle Scholar
  12. 12.
    Lu Y, Shi W, Jiang L et al (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30:1497–1500.  https://doi.org/10.1002/elps.200800563CrossRefPubMedGoogle Scholar
  13. 13.
    Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81:7091–7095.  https://doi.org/10.1021/ac901071pCrossRefPubMedGoogle Scholar
  14. 14.
    Renault C, Koehne J, Ricco AJ, Crooks RM (2014) Three-dimensional wax patterning of paper fluidic devices. Langmuir 30:7030–7036.  https://doi.org/10.1021/la501212bCrossRefPubMedGoogle Scholar
  15. 15.
    Tse CCW, Ng SS, Stringer J et al (2016) Utilising inkjet printed paraffin wax for cell patterning applications. Int J Bioprinting 2(1):35–44.  https://doi.org/10.18063/IJB.2016.01.001CrossRefGoogle Scholar
  16. 16.
    Yun YH, Lee BK, Choi JS et al (2011) A glucose sensor fabricated by piezoelectric inkjet printing of conducting polymers and bienzymes. Anal Sci 27:375.  https://doi.org/10.2116/analsci.27.375CrossRefPubMedGoogle Scholar
  17. 17.
    Setti L, Fraleoni-Morgera A, Ballarin B et al (2005) An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. Biosens Bioelectron 20:2019–2026.  https://doi.org/10.1016/j.bios.2004.09.022CrossRefPubMedGoogle Scholar
  18. 18.
    Wang TWT, Cook C, Derby B (2009) Fabrication of a glucose biosensor by piezoelectric inkjet printing. 2009 Third Int Conf Sens Technol Appl.  https://doi.org/10.1109/SENSORCOMM.2009.20
  19. 19.
    Bietsch A, Zhang J, Hegner M et al (2004) Rapid functionalization of cantilever array sensors by inkjet printing. Nanotechnology 15:873–880.  https://doi.org/10.1088/0957-4484/15/8/002CrossRefGoogle Scholar
  20. 20.
    Tse C, Whiteley R, Yu T et al (2016) Inkjet printing Schwann cells and neuronal analogue NG108-15 cells. Biofabrication 8:15017.  https://doi.org/10.1088/1758-5090/8/1/015017CrossRefGoogle Scholar
  21. 21.
    Phelan MC (2007) Basic techniques in mammalian cell tissue culture. Curr Protoc Cell Biol Chapter 1:Unit 1.1. doi: https://doi.org/10.1002/0471143030.cb0101s36
  22. 22.
    Roth EA, Xu T, Das M et al (2004) Inkjet printing for high-throughput cell patterning. Biomaterials 25:3707–3715.  https://doi.org/10.1016/j.biomaterials.2003.10.052CrossRefPubMedGoogle Scholar
  23. 23.
    Soltman DB (2011) Understanding inkjet printed pattern generation. Program, 1–97Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Kroto Research InstituteUniversity of SheffieldSheffieldUK

Personalised recommendations