Skip to main content

Inkjet Printing for Biomedical Applications

  • Protocol
  • First Online:
Cell-Based Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1771))

Abstract

Inkjet printing can deposit politer volumes of a specified ink at precise locations on a substrate. Here we describe methods of using inkjet printing for cell patterning in the field of biomedical applications, either directly printing cells in cell media, or indirectly through printing a wax scaffold that guides cell orientation/attachment onto a substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nesic D, Whiteside R, Brittberg M et al (2006) Cartilage tissue engineering for degenerative joint disease. Adv Drug Deliv Rev 58:300–322. https://doi.org/10.1016/j.addr.2006.01.012

    Article  CAS  PubMed  Google Scholar 

  2. Bannasch H, Föhn M, Unterberg T et al (2003) Skin tissue engineering. Chirurg 74:802–807. https://doi.org/10.1007/s00104-003-0725-4

    Article  CAS  PubMed  Google Scholar 

  3. Théry M (2010) Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci 123:4201–4213. https://doi.org/10.1242/jcs.075150

    Article  CAS  PubMed  Google Scholar 

  4. Kumar S, LeDuc PR (2009) Dissecting the molecular basis of the mechanics of living cells. Exp Mech 49:11–23. https://doi.org/10.1007/s11340-007-9063-7

    Article  CAS  Google Scholar 

  5. Chen CS, Mrksich M, Huang S et al (1997) Geometric control of cell life and death. Science 276:1425–1428. https://doi.org/10.1126/science.276.5317.1425

    Article  CAS  PubMed  Google Scholar 

  6. Dike LE, Chen CS, Mrksich M et al (1999) Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell Dev Biol Anim 35:441–448. https://doi.org/10.1007/s11626-999-0050-4

    Article  CAS  PubMed  Google Scholar 

  7. McBeath R, Pirone DM, Nelson CM et al (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495. https://doi.org/10.1016/S1534-5807(04)00075-9

    Article  CAS  PubMed  Google Scholar 

  8. Banerjee S, Sknepnek R, Marchetti MC (2014) Optimal shapes and stresses of adherent cells on patterned substrates. Soft Matter 10:2424–2430. https://doi.org/10.1039/c3sm52647j

    Article  CAS  PubMed  Google Scholar 

  9. Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10:21–33. https://doi.org/10.1038/nrm2593

    Article  CAS  PubMed  Google Scholar 

  10. Duclos G, Garcia S, Yevick HG, Silberzan P (2014) Perfect nematic order in confined monolayers of spindle-shaped cells. Soft Matter 10:2346–2353. https://doi.org/10.1039/c3sm52323c

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Tse C, Rouholamin D, Smith PJ (2012) Scaffolds for tissue engineering produced by inkjet printing. Cent Eur J Eng 2:325–335. https://doi.org/10.2478/s13531-012-0016-2

    Article  CAS  Google Scholar 

  12. Lu Y, Shi W, Jiang L et al (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30:1497–1500. https://doi.org/10.1002/elps.200800563

    Article  CAS  PubMed  Google Scholar 

  13. Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81:7091–7095. https://doi.org/10.1021/ac901071p

    Article  CAS  PubMed  Google Scholar 

  14. Renault C, Koehne J, Ricco AJ, Crooks RM (2014) Three-dimensional wax patterning of paper fluidic devices. Langmuir 30:7030–7036. https://doi.org/10.1021/la501212b

    Article  CAS  PubMed  Google Scholar 

  15. Tse CCW, Ng SS, Stringer J et al (2016) Utilising inkjet printed paraffin wax for cell patterning applications. Int J Bioprinting 2(1):35–44. https://doi.org/10.18063/IJB.2016.01.001

    Article  CAS  Google Scholar 

  16. Yun YH, Lee BK, Choi JS et al (2011) A glucose sensor fabricated by piezoelectric inkjet printing of conducting polymers and bienzymes. Anal Sci 27:375. https://doi.org/10.2116/analsci.27.375

    Article  CAS  PubMed  Google Scholar 

  17. Setti L, Fraleoni-Morgera A, Ballarin B et al (2005) An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. Biosens Bioelectron 20:2019–2026. https://doi.org/10.1016/j.bios.2004.09.022

    Article  CAS  PubMed  Google Scholar 

  18. Wang TWT, Cook C, Derby B (2009) Fabrication of a glucose biosensor by piezoelectric inkjet printing. 2009 Third Int Conf Sens Technol Appl. https://doi.org/10.1109/SENSORCOMM.2009.20

  19. Bietsch A, Zhang J, Hegner M et al (2004) Rapid functionalization of cantilever array sensors by inkjet printing. Nanotechnology 15:873–880. https://doi.org/10.1088/0957-4484/15/8/002

    Article  CAS  Google Scholar 

  20. Tse C, Whiteley R, Yu T et al (2016) Inkjet printing Schwann cells and neuronal analogue NG108-15 cells. Biofabrication 8:15017. https://doi.org/10.1088/1758-5090/8/1/015017

    Article  CAS  Google Scholar 

  21. Phelan MC (2007) Basic techniques in mammalian cell tissue culture. Curr Protoc Cell Biol Chapter 1:Unit 1.1. doi:https://doi.org/10.1002/0471143030.cb0101s36

  22. Roth EA, Xu T, Das M et al (2004) Inkjet printing for high-throughput cell patterning. Biomaterials 25:3707–3715. https://doi.org/10.1016/j.biomaterials.2003.10.052

    Article  CAS  PubMed  Google Scholar 

  23. Soltman DB (2011) Understanding inkjet printed pattern generation. Program, 1–97

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher Chi Wai Tse or Patrick J. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tse, C.W., Smith, P. (2018). Inkjet Printing for Biomedical Applications. In: Ertl, P., Rothbauer, M. (eds) Cell-Based Microarrays. Methods in Molecular Biology, vol 1771. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7792-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7792-5_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7791-8

  • Online ISBN: 978-1-4939-7792-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics