Fabrication of Biomolecule Microarrays for Cell Immobilization Using Automated Microcontact Printing

  • Julie Foncy
  • Aurore Estève
  • Amélie Degache
  • Camille Colin
  • Jean Christophe Cau
  • Laurent Malaquin
  • Christophe Vieu
  • Emmanuelle Trévisiol
Part of the Methods in Molecular Biology book series (MIMB, volume 1771)


Biomolecule microarrays are generally produced by conventional microarrayer, i.e., by contact or inkjet printing. Microcontact printing represents an alternative way of deposition of biomolecules on solid supports but even if various biomolecules have been successfully microcontact printed, the production of biomolecule microarrays in routine by microcontact printing remains a challenging task and needs an effective, fast, robust, and low-cost automation process. Here, we describe the production of biomolecule microarrays composed of extracellular matrix protein for the fabrication of cell microarrays by using an automated microcontact printing device. Large scale cell microarrays can be reproducibly obtained by this method.

Key words

Biomolecule microarrays Cell microarrays Microcontact printing Micropatterning Cell architecture 



This work was supported by the national research agency “LABCOM” program (ANR-13-LAB2-0009-01) and partly supported by LAAS CNRS micro and nanotechnology facilities platform (member of the French RENATECH network). We thank Charline Blatché for her assistance in the cell microarray fabrication.


  1. 1.
    Ruiz SA, Chen CS (2007) Microcontact printing: a tool to pattern. Soft Matter 3:168–177CrossRefGoogle Scholar
  2. 2.
    Lange SA, Benes V, Kern DP, Hörber H, Bernard A (2004) Microcontact printing of DNA molecules. Anal Chem 76:1641–1647CrossRefGoogle Scholar
  3. 3.
    Thibault C, Le Berre V, Casimirius S, Trévisiol E, François JM, Vieu C (2005) Direct microcontact printing of oligonucleotides for biochip applications. J Nanobiotechnol 3:7CrossRefGoogle Scholar
  4. 4.
    Fredonnet J, Foncy J, Cau JC, Séverac C, François JM, Trévisiol E (2016) Automated and multiplexed soft lithography for the production of low-density DNA microarrays. Microarrays 5:25CrossRefGoogle Scholar
  5. 5.
    Voskuhl J, Brinkmann J, Jonkheijm P (2014) Advances in contact printing technologies of carbohydrate, peptide and protein arrays. Curr Opin Chem Biol 18:1–7CrossRefGoogle Scholar
  6. 6.
    Bernard A, Delamarche E, Schmid H, Michel B, Bosshard HR, Biebuyck H (1998) Printing patterns of proteins. Langmuir 14:2225–2229CrossRefGoogle Scholar
  7. 7.
    Renaud JP, Bernard A, Bietsch A, Michel B, Bosshard HR, Delamarche E (2003) Fabricating arrays of single protein molecules on glass using microcontact printing. J Phys Chem B 108:703–711Google Scholar
  8. 8.
    Ricoult SG, Nezhad AS, Knapp-Mohammady M, Kennedy TE, Juncker D (2014) Humidified microcontact printing of proteins: universal patterning of proteins on both low and high energy surfaces. Langmuir 30:12002–12010CrossRefGoogle Scholar
  9. 9.
    Hartmann M, Roeraade J, Stoll D, Templin MF, Joos TO (2009) Protein microarrays for diagnostic assays. Anal Bioanal Chem 393:1407–1416CrossRefGoogle Scholar
  10. 10.
    Sin MLY, Mach KE, Wong PK, Liao JC (2014) Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev Mol Diagn 14:225–244CrossRefGoogle Scholar
  11. 11.
    Shen K, Thomas VK, Dustin ML, Kam LC (2008) Micropatterning of costimulatory ligands enhances CD4+ T cell function. Proc Natl Acad Sci U S A 105:7791–7796CrossRefGoogle Scholar
  12. 12.
    Fritz M, Bastmeyer M (2013) Microcontact printing of substrate-bound protein patterns for cell and tissue culture. Methods Mol Biol 1018:247–259CrossRefGoogle Scholar
  13. 13.
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495CrossRefGoogle Scholar
  14. 14.
    Tseng Q, Duchemin-Pelletier E, Deshiere A, Balland M, Guillou H, Filhol O, Théry M (2012) Spatial organization of extracellular matrix regulates cell-cell junction positioning. Proc Natl Acad Sci U S A 109:1506–1511CrossRefGoogle Scholar
  15. 15.
    Gao L, McBeath R, Chen CS (2010) Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin. Stem Cells 28:564–572PubMedPubMedCentralGoogle Scholar
  16. 16.
    Huang S, Ingber DE (2000) Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Exp Cell Res 25:91–103CrossRefGoogle Scholar
  17. 17.
    Théry M, Racine V, Pépin A, Piel M, Chen Y, Sibarita JB, Bornens M (2005) The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol 7:947–953CrossRefGoogle Scholar
  18. 18.
    Dupin I, Camand E, Etienne-Manneville S (2009) Classical cadherins control nucleus and centrosome position and cell polarity. J Cell Biol 185:779–786CrossRefGoogle Scholar
  19. 19.
    Desai RA, Gao L, Raghavan S, Liu WF, Chen CS (2009) Cell polarity triggered by cell-cell adhesion via E-cadherin. J Cell Sci 122:905–911CrossRefGoogle Scholar
  20. 20.
    Théry M, Bornens M (2006) Cell shape and cell division. Curr Opin Cell Biol 18:648–657CrossRefGoogle Scholar
  21. 21.
    Parker KK, Brock AL, Brangwynne C, Mannix RJ, Wang N, Ostuni E, Geisse NA, Adams JC, Whitesides GM, Ingber DE (2002) Directional control of lamellipodia extension by constraining cell shape and orientating cell tractional forces. FASEB J 16(10):1195–1204CrossRefGoogle Scholar
  22. 22.
    Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM (1999) Patterning proteins and cells using soft lithography. Biomaterials 20:2363–2376CrossRefGoogle Scholar
  23. 23.
    Brock A, Chang E, Ho CC, LeDuc P, Jiang X, Whitesides GM, Ingber DE (2003) Geometric determinants of directional cell motility revealed using microcontact printing. Langmuir 19:1611–1617CrossRefGoogle Scholar
  24. 24.
    Mrksich M, Dike LE, Tien J, Ingber DE, Whitesides GM (1997) Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Exp Cell Res 15:305–313CrossRefGoogle Scholar
  25. 25.
    Théry M (2010) Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci 123:4201–4213CrossRefGoogle Scholar
  26. 26.
    James J, Goluch ED, Hu H, Mrksich M (2008) Subcellular curvature at the perimeter of micropatterned cells influences lamellipodial distribution and cell polarity. Cell Motil Cytoskeleton 65:841–852CrossRefGoogle Scholar
  27. 27.
    Cau JC, Lafforgue L, Nogues M, Lagraulet A, Paveau V (2013) Magnetic field assisted microcontact printing: a new concept of fully automated and calibrated process. Microelectron Eng 110:207–214CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Julie Foncy
    • 1
  • Aurore Estève
    • 1
  • Amélie Degache
    • 2
  • Camille Colin
    • 1
  • Jean Christophe Cau
    • 2
  • Laurent Malaquin
    • 1
  • Christophe Vieu
    • 1
  • Emmanuelle Trévisiol
    • 1
  1. 1.Laboratory for Analysis and Architecture of Systems (LAAS-CNRS)Université de Toulouse, CNRS, INSAToulouseFrance
  2. 2.INNOPSYSCarbonneFrance

Personalised recommendations