Skip to main content

3D Plasma Nanotextured® Polymeric Surfaces for Protein or Antibody Arrays, and Biomolecule and Cell Patterning

  • Protocol
  • First Online:
Cell-Based Microarrays

Abstract

Plasma micro-nanotexturing is a generic technology for topographical and chemical modification of surfaces and their implementation in microfluidics and microarrays. Nanotextured surfaces with desirable chemical functionality (and wetting behavior) have shown excellent biomolecule immobilization and cell adhesion. Specifically, nanotextured hydrophilic areas show (a) strong binding of biomolecules and (b) strong adhesion of cells, while nanotextured superhydrophobic areas show null adsorption of (a) proteins and (b) cells. Here we describe the protocols for (a) biomolecule adsorption control on nanotextured surfaces for microarray fabrication and (b) cell adhesion on such surfaces. 3D plasma nanotextured® substrates are commercialized through Nanoplasmas private company, a spin-off of the National Centre for Scientific Research Demokritos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ino K, Ito A, Wu Y, Saito N, Hibino E, Takai O, Honda H (2007) Application of ultra-water-repellent surface to cell culture. J Biosci Bioeng 104(5):420–423. https://doi.org/10.1263/jbb.104.420

    Article  CAS  Google Scholar 

  2. Wei S, Vaidya B, Patel AB, Soper SA, McCarley RL (2005) Photochemically patterned poly(methyl methacrylate) surfaces used in the fabrication of microanalytical devices. J Phys Chem B 109(35):16988–16996. https://doi.org/10.1021/jp051550s

    Article  CAS  PubMed  Google Scholar 

  3. Desmet T, Morent R, Geyter ND, Leys C, Schacht E, Dubruel P (2009) Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modifi cation: a review. Biomacromolecules 10:2351

    Article  CAS  Google Scholar 

  4. Baquey C, Palumbo F, Porte-Durrieu MC, Legeay G, Tressaud A, d’Agostino R (1999) Plasma treatment of expanded PTFE offers a way to a biofunctionalization of its surface. Nucl Instrum Methods Phys Res, Sect B 151(1–4):255–262. https://doi.org/10.1016/S0168-583X(99)00106-8

    Article  CAS  Google Scholar 

  5. Bergemann C, Quade A, Kunz F, Ofe S, Klinkenberg E-D, Laue M, Schröder K, Weissmann V, Hansmann H, Weltmann K-D, Nebe B (2012) Ammonia plasma functionalized polycarbonate surfaces improve cell migration inside an artificial 3D cell culture module. Plasma Processes Polym 9(3):261–272. https://doi.org/10.1002/ppap.201100059

    Article  CAS  Google Scholar 

  6. Brétagnol F, Valsesia A, Ceccone G, Colpo P, Gilliland D, Ceriotti L, Hasiwa M, Rossi F (2006) Surface functionalization and patterning techniques to design interfaces for biomedical and biosensor applications. Plasma Processes Polym 3(6–7):443–455. https://doi.org/10.1002/ppap.200600015

    Article  CAS  Google Scholar 

  7. Goddard JM, Hotchkiss JH (2007) Polymer surface modifi cation for the attachment of bioactive compounds. Prog Polym Sci 32:698

    Article  CAS  Google Scholar 

  8. Siow KS, Britcher L, Kumar S, HJ G (2006) Plasma methods for the generation of chemically reactive surfaces for biomedical immobilization and cell colonization—a review. Plasma Processes Polym 3:392

    Article  CAS  Google Scholar 

  9. Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mat Sci Eng: R: Reports 36(5–6):143–206. https://doi.org/10.1016/S0927-796X(02)00004-9

    Article  Google Scholar 

  10. Tsougeni K, Tserepi A, Boulousis G, Constantoudis V, Gogolides E (2007) Tunable poly(dimethylsiloxane) topography in O 2 or Ar plasmas for controlling surface wetting properties and their ageing. Jpn J Appl Phys 46(2R):744

    Article  CAS  Google Scholar 

  11. Vourdas N, Tserepi A, Gogolides E (2007) Nanotextured super-hydrophobic transparent poly(methyl methacrylate) surfaces using high-density plasma processing. Nanotechnology 18(12):125304

    Article  Google Scholar 

  12. Tsougeni K, Petrou PS, Tserepi A, Kakabakos SE, Gogolides E (2009) Nano-texturing of poly(methyl methacrylate) polymer using plasma processes and applications in wetting control and protein adsorption. Microelectron Eng 86(4–6):1424–1427. https://doi.org/10.1016/j.mee.2008.11.082

    Article  CAS  Google Scholar 

  13. Tsougeni K, Tserepi A, Boulousis G, Constantoudis V, Gogolides E (2007) Control of Nanotexture and wetting properties of Polydimethylsiloxane from very hydrophobic to super-hydrophobic by plasma processing. Plasma Processes Polym 4(4):398–405. https://doi.org/10.1002/ppap.200600185

    Article  CAS  Google Scholar 

  14. Tsougeni K, Tserepi A, Constantoudis V, Gogolides E, Petrou PS, Kakabakos SE (2010) Plasma nanotextured PMMA surfaces for protein arrays: increased protein binding and enhanced detection sensitivity. Langmuir 26(17):13883–13891. https://doi.org/10.1021/la101957w

    Article  CAS  PubMed  Google Scholar 

  15. Tsougeni K, Vourdas N, Tserepi A, Gogolides E, Cardinaud C (2009) Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces. Langmuir 25(19):11748–11759. https://doi.org/10.1021/la901072z

    Article  CAS  PubMed  Google Scholar 

  16. Vourdas NE, Vlachopoulou M-E, Tserepi A, Gogolides E (2009) Nano-textured polymer surfaces with controlled wetting and optical properties using plasma processing. Int J Nanotechnol 6(1–2):196–207. https://doi.org/10.1504/ijnt.2009.021716

    Article  CAS  Google Scholar 

  17. Tserepi A, Vlachopoulou ME, Gogolides E (2006) Nanotexturing of poly(dimethylsiloxane) in plasmas for creating robust super-hydrophobic surfaces. Nanotechnology 17:3977

    Article  CAS  Google Scholar 

  18. Vlachopoulou ME, Petrou PS, Kakabakos SE, Tserepi A, Gogolides E (2008) High-aspect-ratio plasma-induced nanotextured poly(dimethylsiloxane) surfaces with enhanced protein adsorption capacity. J Vac Sci Technol B 26(6):2543–2548. https://doi.org/10.1116/1.3010723

    Article  CAS  Google Scholar 

  19. Vlachopoulou ME, Petrou PS, Kakabakos SE, Tserepi A, Beltsios K, Gogolides E (2009) Effect of surface nanostructuring of PDMS on wetting properties, hydrophobic recovery and protein adsorption. Microelectron Eng 86(4-6):1321–1324. https://doi.org/10.1016/j.mee.2008.11.050

    Article  CAS  Google Scholar 

  20. Song W, Mano JF (2013) Interactions between cells or proteins and surfaces exhibiting extreme wettabilities. Soft Matter 9:2985–2999. https://doi.org/10.1039/c3sm27739a

    Article  CAS  Google Scholar 

  21. Tsougeni K, Petrou PS, Awsiuk K, Marzec MM, Ioannidis N, Petrouleas V, Tserepi A, Kakabakos SE, Gogolides E (2015) Direct covalent biomolecule immobilization on plasma-Nanotextured chemically stable substrates. ACS Appl Mater Interfaces 7(27):14670–14681. https://doi.org/10.1021/acsami.5b01754

    Article  CAS  PubMed  Google Scholar 

  22. Ishizaki T, Saito N, Takai O (2010) Correlation of cell adhesive behaviors on Superhydrophobic, Superhydrophilic, and micropatterned Superhydrophobic/Superhydrophilic surfaces to their surface chemistry. Langmuir 26(11):8147–8154. https://doi.org/10.1021/La904447c

    Article  CAS  PubMed  Google Scholar 

  23. Oliveira SM, Song W, Alves NM, Mano JF (2011) Chemical modification of bioinspired superhydrophobic polystyrene surfaces to control cell attachment/proliferation. Soft Matter 7(19):8932–8941

    Article  CAS  Google Scholar 

  24. Lai Y, Lin L, Pan F, Huang J, Song R, Huang Y, Lin C, Fuchs H, Chi L (2013) Bioinspired patterning with extreme wettability contrast on TiO2 nanotube array surface: a versatile platform for biomedical applications. Small 9(17):2945–2953

    Article  CAS  Google Scholar 

  25. Tsougeni K, Bourkoula A, Petrou P, Tserepi A, Kakabakos SE, Gogolides E (2014) Photolithography and plasma processing of polymeric lab on chip for wetting and fouling control and cell patterning. Microelectron Eng 124:47–52. https://doi.org/10.1016/j.mee.2014.04.020

    Article  CAS  Google Scholar 

  26. Poncin-Epaillard F, Herry JM, Marmey P, Legeay G, Debarnot D, Bellon-Fontaine MN (2013) Elaboration of highly hydrophobic polymeric surface—a potential strategy to reduce the adhesion of pathogenic bacteria? Mater Sci Eng C 33:1152–1161. https://doi.org/10.1016/j.msec.2012.12.020

    Article  CAS  Google Scholar 

  27. Zavali M, Petrou PS, Kakabakos SE, Kitsara M, Raptis I, Beltsios K, Misiakos K (2006) Label-free kinetic study of biomolecular interactions by white light reflectance spectroscopy. IET Micro & Nano Letters 1(2):94–98. https://doi.org/10.1049/mnl:20065019

    Article  CAS  Google Scholar 

  28. Bayiati P, Tserepi A, Gogolides E, Misiakos K (2004) Selective plasma-induced deposition of fluorocarbon films on metal surfaces for actuation in microfluidics. J Vac Sci Technnol A 22(4):1546–1551

    Article  CAS  Google Scholar 

  29. Tsougeni K, Papageorgiou D, Tserepi A, Gogolides E (2010) "Smart'" polymeric microfluidics fabricated by plasma processing: controlled wetting, capillary filling and hydrophobic valving. Lab Chip 10(4):462–469. https://doi.org/10.1039/B916566e

    Article  CAS  PubMed  Google Scholar 

  30. Tsougeni K, Petrou PS, Papageorgiou DP, Kakabakos SE, Tserepi A, Gogolides E (2012) Controlled protein adsorption on microfluidic channels with engineered roughness and wettability. Sensor Actuat B-Chem 161(1):216–222. https://doi.org/10.1016/j.snb.2011.10.022

    Article  CAS  Google Scholar 

  31. Greener J, Li W, Ren J, Voicu D, Pakharenko V, Tang T, Kumacheva E (2010) Rapid, cost-efficient fabrication of microfluidic reactors in thermoplastic polymers by combining photolithography and hot embossing. Lab Chip 10(4):522–524. https://doi.org/10.1039/b918834g

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The following projects are acknowledged for funding of this work: (1) “Love Wave Fully Integrated Lab-on-chip Platform for Food Pathogen Detection”—LOVE FOOD project (Contract No 317742), (2) Horizon 2020-EU 2.1.1, Project ID: 68768, “LOVEFOOD2Market—A portable MicroNanoBioSystem and Instrument for ultra-fast analysis of pathogens in food: Innovation from LOVE-FOOD lab prototype to a pre-commercial instrument” (http://lovefood2market.eu/).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katerina Tsougeni or Evangelos Gogolides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tsougeni, K. et al. (2018). 3D Plasma Nanotextured® Polymeric Surfaces for Protein or Antibody Arrays, and Biomolecule and Cell Patterning. In: Ertl, P., Rothbauer, M. (eds) Cell-Based Microarrays. Methods in Molecular Biology, vol 1771. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7792-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7792-5_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7791-8

  • Online ISBN: 978-1-4939-7792-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics