Oxygen-Generating Photocrosslinkable Hydrogel

  • Neslihan Alemdar
Part of the Methods in Molecular Biology book series (MIMB, volume 1771)


Providing sufficient amount of oxygen to the cells is a critical issue since the lack of adequate oxygen leads to cell death and tissue necrosis. Therefore, there is a vital need to design and fabricate oxygen-generating biomaterials to mitigate hypoxia-induced cell death in engineered tissues. Here, we report the fabrication of an oxygen-generating hydrogel by incorporating calcium peroxide (CPO) into the methacrylated gelatin (GelMA) structure using photocrosslinking process. A sustainable release of oxygen could be provided from CPO-GelMA hydrogel over a period of 5 days under hypoxic conditions (1% O2).

Key words

Gelatin Photocrosslinking Oxygen-generating hydrogel 



The authors acknowledge funding from the National Science Foundation (EFRI-1240443), IMMODGEL (602694), and the National Institutes of Health (EB012597, AR057837, DE021468, HL099073, AI105024, and AR063745).


  1. 1.
    Carrier RL, Papadaki M, Rupnick M, Schoen FJ, Bursac N, Langer R et al (1999) Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng 64:580–589CrossRefGoogle Scholar
  2. 2.
    Lewis MC, MacArthur BD, Malda J, Pettet G, Please CP (2005) Heterogeneous proliferation within engineered cartilaginous tissue: the role of oxygen tension. Biotechnol Bioeng 91:607–615CrossRefGoogle Scholar
  3. 3.
    Radisic M, Yang LM, Boublik J, Cohen RJ, Langer R, Freed LE, Vunjak-Novakovic G (2004) Medium perfusion enables engineering of compact and contractile cardiac tissue. Am J Physiol Heart Circ Physiol 286:507–516CrossRefGoogle Scholar
  4. 4.
    Li Z, Guo X, Guan J (2012) An oxygen release system to augment cardiac progenitor cell survival and differentiation under hypoxic condition. Biomaterials 33:5914–5923CrossRefGoogle Scholar
  5. 5.
    Robey TE, Saiget MK, Reinecke H, Murry CE (2008) Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol 45:567–581CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Harrison BS, Eberli D, Lee SJ, Atala A, Yoo JJ (2007) Oxygen producing biomaterials for tissue regeneration. Biomaterials 28:4628–4634CrossRefGoogle Scholar
  7. 7.
    Ochao M, Rahimi R, Huang TL, Alemdar N, Khademhosseini A, Dokmeci MR, Ziaie B (2014) A paper-based oxygen – generating platform with spatially defined catalytic regions. Sensors Actuators B Chem 198:472–478CrossRefGoogle Scholar
  8. 8.
    Lairet KF, Baer D, Leas ML, Renz EM, Cancio LC (2014) Evaluation of an oxygen-diffusion dressing for accelerated healing of donor-site wounds. J Burn Care Res 35(3):214–218CrossRefPubMedGoogle Scholar
  9. 9.
    Oh SH, Ward CL, Atala A, Yoo JJ, Harrison BS (2009) Oxygen-generating scaffolds for enhancing engineered tissue survival. Biomaterials 30:757–762CrossRefPubMedGoogle Scholar
  10. 10.
    Alemdar N, Leijten J, Camci-Unal G, Hjortnaes J, Ribas J, Paul A, Mostafalu P, Gaharwar AK, Qiu Y, Sonkusale S, Liao R, Khademhosseini A (2016) Oxygen-generating photo-cross-linkable hydrogels support cardiac progenitor cell survival by reducing hypoxia-induced necrosis. ACS Biomater Sci Eng.
  11. 11.
    Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shin H, Olsen BD, Khademhosseini A (2012) The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials 33:3143–3152CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Camci-Unal G, Cuttica D, Annabi N, Demarchi D, Khademhosseini A (2013) Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels. Biomacromolecules 14(4):1085–1092CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Camci-Unal G, Aubin H, Ahari AF, Bae H, Nichol JW, Khademhosseini A (2010) Surface-modified hyaluronic acid hydrogels to capture endothelial progenitor cells. Soft Matter 6(20):5120–5126CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hosseini V, Ahadian S, Ostrovidov S, Camci-Unal G, Chen S, Kaji H, Ramalingam M, Khademhosseini A (2012) Engineered contractile skeletal muscle tissue on a micro grooved methacrylated gelatin substrate. Tissue Eng A 18:2453–2465CrossRefGoogle Scholar
  16. 16.
    Cassidy DP, Irvine RL (1999) Use of calcium peroxide to provide oxygen for contaminant biodegradation in a saturated soil. J Hazard Mater 69:25–39CrossRefPubMedGoogle Scholar
  17. 17.
    Autissier A, Visage CL, Pouzet C, Chaubet F, Letourneur D (2010) Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. Acta Biomater 6:3640–3648CrossRefPubMedGoogle Scholar
  18. 18.
    Ogura Y, Yamazaki I (1983) Steady-state kinetics of the catalase reaction in the presence of cyanide. J Biochem 94(2):403–408CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringMarmara UniversityIstanbulTurkey

Personalised recommendations