Skip to main content

Chlorophyll Fluorescence on the Fast Timescale

  • Protocol
  • First Online:
Photosynthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1770))

Abstract

Chlorophyll fluorescence is a rapid and non-invasive tool used for probing the activity of photosynthesis that can be used in vivo and in the field. It is highly relevant to the demands of high-throughput crop phenotyping and can be automated or manually applied. Here we describe protocols and advice for making fast timescale fluorescence measurements using handheld equipment in the laboratory or in the field. While interpretation of some measured parameters requires caution, we demonstrate that this technique is appropriate for some applications where convenience, rapidity, and sensitivity are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pask AJD, Pietragalla J, Mullan D, Reynolds MP (eds) (2012) Physiological breeding II: a field guide to wheat phenotyping. Mexico, International Wheat and Maize Improvement Center (CIMMYT)

    Google Scholar 

  2. Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulated fluorometer. Photosynth Res 10:51–62

    Article  CAS  PubMed  Google Scholar 

  3. Strasser RJ, Govindjee (1991) The F0 and the O-J–I–P fluorescence rise in higher plants and algae. In: Argyroudi-Akoyunoglou JH (ed) Regulation of chloroplast biogenesis. Plenum Press, New York, pp 423–426

    Google Scholar 

  4. Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998

    Article  CAS  PubMed  Google Scholar 

  5. Lazár D (2006) The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct Plant Biol 33:9–30

    Article  Google Scholar 

  6. Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 321–362

    Chapter  Google Scholar 

  7. Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transients in plants and cyanobacteria. Photochem Photobiol 61:32–42

    Article  CAS  Google Scholar 

  8. Ajigboye OO, Murchie EH, Ray RV (2014) Foliar application of isopyrazam and epoxiconazole improves photosystem II efficiency, biomass and yield in winter wheat. Pestic Biochem Physiol 114:52–60

    Article  CAS  PubMed  Google Scholar 

  9. Ajigboye OO, Bousquet L, Murchie EH, Ray RV (2016) Chlorophyll fluorescence parameters allow the rapid detection and differentiation of plant responses in three different wheat pathosystems. Funct Plant Biol 43(4):356–369

    Article  CAS  Google Scholar 

  10. Ajigboye OO, Lu C, Murchie EH, Schlatter C, Swart G, Ray RV (2017) Altered gene expression by sedaxane increases PSII efficiency, photosynthesis and growth and improves tolerance to drought in wheat seedlings. Pestic Biochem Physiol 137:49–61

    Article  CAS  PubMed  Google Scholar 

  11. Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B 104:236–257

    Article  CAS  PubMed  Google Scholar 

  12. Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation, vol 25. Taylor and Francis, London, pp 445–483

    Google Scholar 

  13. Suzuki S, Nakamoto H, Ku MSB, Edwards GE (1987) Influence of leaf age on photosynthesis, enzyme activity, and metabolite levels in wheat. Plant Physiol 84:1244–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ripoll J, Bertin N, Bidel LPR, Urban L (2016) A user’s view of the parameters derived from the induction curves of maximal chlorophyll a fluorescence: perspectives for analysing stress. Front Plant Sci 7:1679

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olubukola O. Ajigboye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ajigboye, O.O., Ray, R.V., Murchie, E.H. (2018). Chlorophyll Fluorescence on the Fast Timescale. In: Covshoff, S. (eds) Photosynthesis. Methods in Molecular Biology, vol 1770. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7786-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7786-4_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7785-7

  • Online ISBN: 978-1-4939-7786-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics