Skip to main content

“Click” Methodology for the Functionalization of Water Oxidation Catalyst Iridium Oxide Nanoparticles with Hydrophobic Dyes for Artificial Photosynthetic Constructs

  • Protocol
  • First Online:
Book cover Photosynthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1770))

  • 2396 Accesses

Abstract

The unusually high tolerance toward chemical functional groups of the copper(I)-catalyzed Huisgen-Sharpless-Meldal 1,3-dipolar cycloaddition of azides and alkynes protocol (the CuAAC or “click” reaction) associated with its mild conditions and high yields has been explored in the present methodology to successfully prepare water oxidation catalyst iridium oxide nanoparticles decorated with organic dyes. The “click reaction” has proven to be an excellent synthetic tool to overcome the incompatible solubility of the hydrophilic iridium oxide nanoparticles and the hydrophobic dyes. A complex artificial photosynthetic model designed to mimic the photoinduced redox processes occurring in photosystem II is used as a hydrophobic dye to highlight the efficiency and selectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blankenship RE et al (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809

    Article  CAS  PubMed  Google Scholar 

  2. Hoffert MI et al (2002) Advanced technology paths to global climate stability: energy for a greenhouse planet. Science 298:981–987

    Article  CAS  PubMed  Google Scholar 

  3. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103:15729–15735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gust D, Moore TA, Moore LA (2011) Realizing artificial photosynthesis. Faraday Discuss 155:9–26

    Article  Google Scholar 

  5. Barber J (2008) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38:185–196

    Article  PubMed  Google Scholar 

  6. Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, Oxford

    Book  Google Scholar 

  7. Gust D, Moore TA, Moore LA (2009) Solar fuels via artificial photosynthesis. Acc Chem Res 42:1890–1898

    Article  CAS  PubMed  Google Scholar 

  8. Megiatto JD Jr et al (2012) Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation. Proc Natl Acad Sci U S A 109:15578–15583

    Article  PubMed  PubMed Central  Google Scholar 

  9. Megiatto JD Jr et al (2014) A bioinspired redox relay that mimics radical interactions of the Tyr–His pairs of photosystem II. Nat Chem 6:423–428

    Article  CAS  PubMed  Google Scholar 

  10. Zhao Y et al (2012) Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator. Proc Natl Acad Sci U S A 109:15612–15616

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sherman BD et al (2014) Evolution of reaction center mimics to systems capable of generating solar fuel. Photosynth Res 120:59–70

    Article  CAS  PubMed  Google Scholar 

  12. Sherman BD et al (2016) A tandem dye-sensitized photoelectrochemical cell for light driven hydrogen production. Energy Environ Sci 9:1812–1817

    Article  CAS  Google Scholar 

  13. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  14. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  PubMed  Google Scholar 

  15. Youngblood WJ et al (2009) Photoassisted overall water splitting in a visible light absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131:926–927

    Article  CAS  PubMed  Google Scholar 

  16. Hara M, Waraksa CC, Lean JT, Lewis BA, Mallouk TE (2000) Photocatalytic water oxidation in a buffered tris(2,2′-bipyridyl)ruthenium complex-colloidal IrO2 system. J Phys Chem A 104:5275–5280

    Article  CAS  Google Scholar 

  17. Hoertz PG, Kim YI, Youngblood WJ, Mallouk TE (2007) Bidentate dicarboxylate capping groups and photosensitizers control the size of IrO2 nanoparticle catalysts for water oxidation. J Phys Chem B 111:6845–6856

    Article  CAS  PubMed  Google Scholar 

  18. Harriman A, Thomas JM, Millward GR (1987) Catalytic and structural-properties of iridium-iridium dioxide colloids. New J Chem 11:757–762

    CAS  Google Scholar 

  19. Huisgen R (1968) Cycloadditions – definition, classification, and characterization. Angew Chem Int Ed Engl 7:321–328

    Article  CAS  Google Scholar 

  20. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021

    Article  CAS  Google Scholar 

  21. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064

    Article  CAS  PubMed  Google Scholar 

  22. Megiatto JD Jr et al (2012) Intramolecular hydrogen bonding as a synthetic tool to induce chemical selectivity in acid catalyzed porphyrin synthesis. Chem Comm 48:4558–4560

    Article  CAS  PubMed  Google Scholar 

  23. Wagner RW, Ciringh Y, Clausen C, Lindsey JS (1999) Investigation and refinement of palladium-coupling conditions for the synthesis of ciarylethyne-linked multiporphyrin arrays. Chem Mater 11:2974–2983

    Article  CAS  Google Scholar 

  24. Lewis WG, Magallon FG, Fokin VV, Finn MG (2004) Discovery and characterization of catalysts for azide−alkyne cycloaddition by fluorescence quenching. J Am Chem Soc 126:9152–9153

    Article  CAS  PubMed  Google Scholar 

  25. Megiatto JD Jr, Schuster DI (2008) General method for synthesis of functionalized macrocycles and catenanes utilizing “click” chemistry. J Am Chem Soc 130:12872–12873

    Article  CAS  PubMed  Google Scholar 

  26. Megiatto JD Jr et al (2010) [2]catenanes decorated with porphyrin and [60]fullerene groups: design, convergent synthesis, and photoinduced processes. J Am Chem Soc 132:3847–3861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kimer SV et al (2015) Synthesis and photophysical properties of new catenated electron donor-acceptor materials with magnesium and free base porphyrins as donors and C60 as the acceptor. Nanoscale 7:1145–1160

    Article  Google Scholar 

  28. Megiatto JD Jr et al (2011) Optimizing reaction conditions for synthesis of electron donor-[60]fullerene interlocked multiring systems. J Chem Mat 21:1544–1550

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by FAPESP (The State of São Paulo Research Foundation, Brazil) under Award Numbers 2013/22160-0 and 2015/23761-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jackson D. Megiatto Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Megiatto, J.D., Ornelas, C. (2018). “Click” Methodology for the Functionalization of Water Oxidation Catalyst Iridium Oxide Nanoparticles with Hydrophobic Dyes for Artificial Photosynthetic Constructs. In: Covshoff, S. (eds) Photosynthesis. Methods in Molecular Biology, vol 1770. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7786-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7786-4_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7785-7

  • Online ISBN: 978-1-4939-7786-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics