Skip to main content

Using Stable Carbon Isotopes to Study C3 and C4 Photosynthesis: Models and Calculations

  • Protocol
  • First Online:
Photosynthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1770))

Abstract

Stable carbon isotopes are a powerful tool to study photosynthesis. Initial applications consisted of determining isotope ratios of plant biomass using mass spectrometry. Subsequently, theoretical models relating C-isotope values to gas exchange characteristics were introduced and tested against instantaneous online measurements of 13C photosynthetic discrimination. Beginning in the twenty-first century, tunable diode laser spectroscopes with sufficient precision for determining isotope mixing ratios became commercially available. This has allowed collection of large data sets, at low cost and with unprecedented temporal resolution. With more data and accompanying knowledge, it has become apparent that there is a need for increased complexity in models and calculations. This chapter describes instantaneous online measurements of 13C photosynthetic discrimination, provides recommendations for experimental setup, and presents a thorough compilation of equations needed for different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust J Plant Physiol 11(6):539–552

    Article  CAS  Google Scholar 

  2. Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Article  CAS  Google Scholar 

  3. Zhang QL, Li WJ (1990) A calibrated measurement of the atomic weight of carbon. Chin Sci Bull 35:290–296

    CAS  Google Scholar 

  4. Tans PP, Crotwell AM, Thoning KW (2017) Abundances of isotopologues and calibration of CO2 greenhouse gas measurements. Atmos Meas Tech 10:2669–2685

    Article  CAS  Google Scholar 

  5. Griffis TJ, Baker JM, Sargent SD, Tanner BD, Zhang J (2004) Measuring field-scale isotopic CO2 fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques. Agric For Meteorol 124(1–2):15–29

    Article  Google Scholar 

  6. Evans JR, Sharkey TD, Berry JA, Farquhar GD (1986) Carbon isotope discrimination measured concurrently with gas-exchange to investigate CO2 diffusion in leaves of higher-plants. Aust J Plant Physiol 13(2):281–292

    Article  CAS  Google Scholar 

  7. Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9(2):121–137

    Article  CAS  Google Scholar 

  8. Farquhar GD (1983) On the nature of carbon isotope discrimination in C4 species. Aust J Plant Physiol 10(2):205–226

    Article  CAS  Google Scholar 

  9. Farquhar GD, Cernusak LA (2012) Ternary effects on the gas exchange of isotopologues of carbon dioxide. Plant Cell Environ 35(7):1221–1231

    Article  PubMed  CAS  Google Scholar 

  10. Bender MM (1968) Mass spectrometric studies of 13C variations in corn and other grasses. Radiocarbon 10(2):468–472

    Article  Google Scholar 

  11. Troughton JH (1979) δ13C as an inidcator of carboxylation reactions. In: Latzko GM (ed) Encyclopedia of plant physiologhy, vol 6. Springer, Berlin/New York, pp 140–147

    Google Scholar 

  12. Winter K (1981) CO2 and water vapour exchange, malate content and δ13C value in Cicer arietinum grown under two water regimes. Zeitschrift für Pflanzenphysiologie 101:421–430

    Article  CAS  Google Scholar 

  13. Guy RD, Reid DM, Krouse HR (1980) Shifts in carbon isotope ratios of two C3 halophytes under natural and artificial conditions. Oecologia 44:241–247

    Article  PubMed  Google Scholar 

  14. Park R, Epstein S (1961) Metabolic fractionation of C13 and C12 in plants. Plant Physiol 36(2):133–138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Melander L, Saunders WH (1979) Reaction rates of isotopic molecules. John Wiley and Sons, New York

    Google Scholar 

  16. O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20(4):553–567

    Article  Google Scholar 

  17. Cernusak LA, Farquhar GD, Wong SC, Stuart-Williams H (2004) Measurement and interpretation of the oxygen isotope composition of carbon dioxide respired by leaves in the dark. Plant Physiol 136(2):3350–3363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ribas-Carbó M, Still C, Berry J (2002) Automated system for simultaneous analysis of δ13C, δ18O and CO2 concentrations in small air samples. Rapid Commun Mass Spectrom 16:339–345

    Article  PubMed  CAS  Google Scholar 

  19. Cousins AB, Badger MR, von Caemmerer S (2006) Carbonic anhydrase and its influence on carbon isotope discrimination during C4 photosynthesis. Insights from antisense RNA in Flaveria bidentis. Plant Physiol 141(1):232–242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Schnyder H, Schäufele R, Lötscher M, Gebbing T (2003) Disentangling CO2 fluxes: direct measurements of mesocosm-scale natural abundance 13CO2/12CO2 gas exchange, 13C discrimination, and labelling of CO2 exchange flux components in controlled environments. Plant Cell Environ 26(11):1863–1874

    Article  CAS  Google Scholar 

  21. Klumpp K, Schäufele R, Lötscher M, Lattanzi FA, Feneis W, Schnyder H (2005) C-isotope composition of CO2 respired by shoots and roots: fractionation during dark respiration? Plant Cell Environ 28(2):241–250

    Article  CAS  Google Scholar 

  22. Barbour MM, McDowell NG, Tcherkez G, Bickford CP, Hanson DT (2007) A new measurement technique reveals rapid post-illumination changes in the carbon isotope composition of leaf-respired CO2. Plant Cell Environ 30(4):469–482

    Article  PubMed  CAS  Google Scholar 

  23. Tuzson B, Mohn J, Zeeman MJ, Werner RA, Eugste W, Zahniser MS, Nelson DD, McManus JB, Emmenegger L (2008) High precision and continuous field measurements of δ13C and δ18O in carbon dioxide with a cryogen-free QCLAS. Appl Phys B 92:451–458

    Article  CAS  Google Scholar 

  24. Berryman EM, Marshall JD, Rahn T, Cook SP, Litvak M (2011) Adaptation of continuous-flow cavity ring-down spectroscopy for batch analysis of δ13C of CO2 and comparison with isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 25:2355–2360

    Article  PubMed  CAS  Google Scholar 

  25. Tazoe Y, von Caemmerer S, Estavillo GM, Evans JR (2011) Using tunable diode laser spectroscopy to measure carbon isotope discrimination and mesophyll conductance to CO2 diffusion dynamically at different CO2 concentrations. Plant Cell Environ 34:580–591

    Article  PubMed  Google Scholar 

  26. Evans JR, von Caemmerer S (2013) Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco. Plant Cell Environ 36:745–756

    Article  PubMed  CAS  Google Scholar 

  27. Walker B, Ariza LS, Kaines S, Badger MR, Cousins AB (2013) Temperature response of in vivo Rubisco kinetics and mesophyll conductance in Arabidopsis thaliana: comparisons to Nicotiana tabacum. Plant Cell Environ 36:2108–2119

    Article  PubMed  CAS  Google Scholar 

  28. Ubierna N, Sun W, Kramer DM, Cousins AB (2013) The efficiency of C4 photosynthesis under low light conditions in Zea mays, Miscanthus x giganteus and Flaveria bidentis. Plant Cell Environ 36:365–381

    Article  PubMed  CAS  Google Scholar 

  29. Lehmann MM, Wegener F, Barthel M, Maurino VG, Siegwolf RTW, Buchmann N, Werner C, Werner RA (2016) Metabolic fate of the carboxyl groups of malate and pyruvate and their influence on δ13C of leaf-respired CO2 during light enhanced dark respiration. Front Plant Sci 7:739

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hanson DT, Collins AM, Howland DTJ, Roesgen J, López-Nieves S, Timlin JA (2014) On-line stable isotope gas exchange reveals an inducible but leaky carbon concentrating mechanism in Nannochloropsis salina. Photosynth Res 121:311–322

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Bickford CP, McDowell NG, Erhardt EB, Hanson DT (2009) High-frequency field measurements of diurnal carbon isotope discrimination and internal conductance in a semi-arid species, Juniperus monosperma. Plant Cell Environ 32(7):796–810

    Article  PubMed  CAS  Google Scholar 

  32. Bowling DR, Sargent SD, Tanner BD, Ehleringer JR (2003) Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem-atmosphere CO2 exchange. Agric For Meteorol 118(1–2):1–19

    Article  Google Scholar 

  33. Gentsch L, Hammerle A, Sturm P, Ogée J, Wingate L, Siegwolf R, Plüss P, Baur T, Buchmann N, Knohl A (2014) Carbon isotope discrimination during branch photosynthesis of Fagus sylvatica: a Bayesian modelling approach. Plant Cell Environ 37(7):1516–1535

    Article  PubMed  CAS  Google Scholar 

  34. Wehr R, Munger JW, McManus JB, Nelson DD, Zahniser MS, Davidson EA, Wofsy SC, Saleska SR (2016) Seasonality of temperate forest photosynthesis and daytime respiration. Nature 534:680–683

    Article  PubMed  CAS  Google Scholar 

  35. Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559

    Article  Google Scholar 

  36. Marshall JD, Brooks JR, Lajtha K (2007) Sources of variation in the stable isotopic composition of plants. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Wiley-Blackwell, Malden, MA, pp 22–60

    Chapter  Google Scholar 

  37. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  38. Farquhar GD, Hubick KT, Condon AG, Richards RA (1989) Carbon isotope discrimination and water-use efficiency. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Springer-Verlag, New York, pp 21–46

    Chapter  Google Scholar 

  39. Fry B (2006) Stable isotope ecology. Springer-Verlag

    Chapter  Google Scholar 

  40. Cernusak LA, Ubierna N, Winter K, Holtum JAM, Marshall JD, Farquhar GD (2013) Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol 200:950–965

    Article  PubMed  CAS  Google Scholar 

  41. Ehleringer JR, Rundel PW (1989) Stable Isotopes: history, units, and instrumentation. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Ecological studies (analysis and synthesis), vol 68. Springer, New York, NY

    Google Scholar 

  42. Tieszen LL, Boutton TW (1989) Stable carbon isotopes in terrestrial ecosystem research. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research, Ecological studies (analysis and synthesis), vol 68. Springer, New York, NY, pp 167–195

    Chapter  Google Scholar 

  43. Griffiths H (1998) Stable isotopes: integration of biological, ecological and geochemical processes, Environmental plant biology series. BIOS Scientific Publishers, Oxford

    Google Scholar 

  44. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23(7–8):771–801

    Article  Google Scholar 

  45. Ellsworth PZ, Cousins AB (2016) Carbon isotopes and water use efficiency in C4 plants. Curr Opin Plant Biol 31:155–161

    Article  PubMed  CAS  Google Scholar 

  46. Wahl EH, Fidric B, Rella CW, Koulokov S, Kharlamov B, Taz S, Kachanov AA, Richman BA, Crosson ER, Paldus BA, Kalaskar S, Bowling DR (2006) Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide. Isotopes Environ Health Stud 42:21–35

    Article  PubMed  CAS  Google Scholar 

  47. McManus JB, Nelson DD, Shorter JH, Jimenez R, Herdon S, Saleska SR, Zahniser MS (2005) A high precision pulsed quantum cascade laser spectrometer for measurements of stable isotopes of carbon dioxide. J Mod Opt 52(16):2309–2321

    Article  CAS  Google Scholar 

  48. Berden G, Peeters R, Meijer G (2000) Cavity ring-down spectroscopy: experimental schemes and applications. Int Rev Phys Chem 19:565–607

    Article  CAS  Google Scholar 

  49. von Caemmerer S (2000) Biochemical models of leaf photosynthesis. CSIRO Publishing, Collingwood

    Google Scholar 

  50. Ubierna N, Farquhar GD (2014) Advances in measurements and models of photosynthetic carbon isotope discrimination in C3 plants. Plant Cell Environ 37:1494–1498

    Article  PubMed  CAS  Google Scholar 

  51. Wingate L, Seibt U, Moncrieff JB, Jarvis PG, Lloyd J (2007) Variations in 13C discrimination during CO2 exchange by Picea sitchensis branches in the field. Plant Cell Environ 30(5):600–616

    Article  PubMed  CAS  Google Scholar 

  52. Drake BL (2014) Using models of carbon isotope fractionation during photosynthesis to understand the natural fractionation ratio. Radiocarbon 56:29–38

    Article  CAS  Google Scholar 

  53. Tholen D, Ethier G, Genty B, Pepin S, Zhu XG (2012) Variable mesophyll conductance revisited. Theoretical background and experimental implications. Plant Cell Environ 35:2087–2103

    Article  PubMed  CAS  Google Scholar 

  54. Tholen D, Zhu XG (2011) The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion. Plant Physiol 156:90–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Busch FA, Sage TL, Cousins AB, Sage RF (2013) C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2. Plant Cell Environ 36:200–212

    Article  CAS  PubMed  Google Scholar 

  56. Gu L, Sun Y (2014) Artefactual responses of mesophyll conductance to CO2 and irradiance estimated with the variable J and online isotope discrimination methods. Plant Cell Environ 37:1231–1249

    Article  PubMed  CAS  Google Scholar 

  57. Gillon JS, Yakir D (2000) Internal conductance to CO2 diffusion and C18OO discrimination in C3 leaves. Plant Physiol 123(1):201–213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Barbour MM, Evans JR, Simonin KA, von Caemmerer S (2016) Online CO2 and H2O oxygen isotope fractionation allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants. New Phytol 210(3):875–889

    Article  PubMed  CAS  Google Scholar 

  59. Ubierna N, Gandin A, Boyd RA, Cousins AB (2017) Temperature response of mesophyll conductance in three C4 species calculated with two methods: 18O discrimination and in-vitro Vpmax. Corrigendum. New Phytol 217:956–959

    Google Scholar 

  60. Loucos KE, Simonin KA, Barbour MM (2017) Leaf hydraulic conductance and mesophyll conductance are not closely related within a single species. Plant Cell Environ 40:203–215

    Article  PubMed  CAS  Google Scholar 

  61. Farquhar GD, Busch FA (2017) Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: a model. New Phytol 214:570–584

    Article  PubMed  CAS  Google Scholar 

  62. Craig H (1953) The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta 3:53–92

    Article  CAS  Google Scholar 

  63. Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionations between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176

    Article  CAS  Google Scholar 

  64. O’Leary MH (1984) Measurement of the isotope fractionation associated with diffusion of carbon dioxide in aqueous solution. J Phys Chem 88(4):823–825

    Article  Google Scholar 

  65. Zeebe RE (2011) On the molecular diffusion coefficients of dissolved CO2, HCO3 , and CO3 2− and their dependence on isotopic mass. Geochim Cosmochim Acta 75:2483–2498

    Article  CAS  Google Scholar 

  66. Henderson SA, von Caemmerer S, Farquhar GD (1992) Short-term measurements of carbon isotope discrimination in several C4 species. Aust J Plant Physiol 19(3):263–285

    Article  CAS  Google Scholar 

  67. von Caemmerer S, Ludwig M, Millgate A, Farquhar GD, Price GD, Badger M, Furbank RT (1997) Carbon isotope discrimination during C4 photosynthesis: insights from transgenic plants. Aust J Plant Physiol 24(4):487–494

    Article  Google Scholar 

  68. Roeske CA, O’Leary MH (1984) Carbon isotope effects on the enzyme-catalyzed carboxylation of ribulose bisphosphate. Biochemistry 23(25):6275–6284

    Article  CAS  Google Scholar 

  69. Guy RD, Fogel ML, Berry JA (1993) Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Physiol 101(1):37–47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Guy RD, Fogel MF, Berry JA, Hoering TC (1987) Isotope fractionation during oxygen production and consumption by plants. In: Biggins J (ed) Progress in photosynthesis research III. Martinus Nijhoff, Dordrecht, pp 597–600

    Chapter  Google Scholar 

  71. McNevin DB, Badger MR, Whitney SM, von Caemmerer S, Tcherkez G, Farquhar GD (2007) Differences in carbon isotope discrimination of three variants of d-ribulose-1,5-bisphosphate carboxylase/oxygenase reflect differences in their catalytic mechanisms. J Biol Chem 282:36068–36076

    Article  PubMed  CAS  Google Scholar 

  72. von Caemmerer S, Evans JR (1991) Determination of the average partial-pressure of CO2 in chloroplasts from leaves of several C3 plants. Aust J Plant Physiol 18(3):287–305

    Article  Google Scholar 

  73. Vu J, Yelenosky G, Bausher MG (1985) Photosynthetic activity in the flower buds of ‘Valencia’ orange (Citrus sinensis [L.] Osbeck). Plant Physiol 78:420–423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Saurer M, Maurer S, Matyssek R, Landolt W, Günthardt-Goerg MS, Siegenthaler U (1995) The influence of ozone and nutrition on δ13C in Betula pendula. Oecologia 103:397–406

    Article  PubMed  Google Scholar 

  75. Raven JA, Farquhar GD (1990) The influence of N metabolism and organic acid synthesis on the natural abundance of isotopes of carbon in plants. New Phytol 116:505–529

    Article  CAS  PubMed  Google Scholar 

  76. Douthe C, Dreyer E, Brendel O, Warren CR (2012) Is mesophyll conductance to CO2 in leaves of three Eucalyptus species sensitive to short-term changes of irradiance under ambient as well as low O2? Funct Plant Biol 38:434–447

    Google Scholar 

  77. Evans JR, von Caemmerer S, Setchell BA, Hudson GS (1994) The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Aust J Plant Physiol 21(4):475–495

    Article  CAS  Google Scholar 

  78. O’Leary MH, Madhavan S, Paneth P (1992) Physical and chemical basis of carbon isotope fractionation in plants. Plant Cell Environ 15(9):1099–1104

    Article  Google Scholar 

  79. Tcherkez G, Farquhar GD (2005) Carbon isotope effect predictions for enzymes involved in the primary carbon metabolism of plant leaves. Funct Plant Biol 32(4):277–291

    Article  CAS  PubMed  Google Scholar 

  80. Whelan T, Sackett WM, Benedict CR (1973) Enzymatic fractionation of carbon isotopes by phosphoenolpyruvate carboxylase from C4-plants. Plant Physiol 51:1051–1054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. von Caemmerer S, Tazoe Y, Evans JR, Whitney SM (2014) Exploiting transplastomically modified Rubisco to rapidly measure natural diversity in its carbon isotope discrimination using tuneable diode laser spectroscopy. J Exp Bot 65(13):3759–3767

    Article  Google Scholar 

  82. Farquhar G, Ball MC, von Caemmerer S, Roksandic Z (1982) Effect of salinity and humidity on δ13C value of halophytes-evidence for diffusional isotope fractionation determined by the ratio of intercellular/atmospheric partial pressure of CO2 under different environmental conditions. Oecologia 52:121–124

    Article  PubMed  CAS  Google Scholar 

  83. Ubierna N, Marshall JD (2011) Estimation of canopy average mesophyll conductance using δ13C of phloem contents. Plant Cell Environ 34:1521–1535

    Article  PubMed  CAS  Google Scholar 

  84. von Caemmerer S, Ghannoum O, Pengelly JJL, Cousins AB (2014) Carbon isotope discrimination as a tool to explore C4 photosynthesis. J Exp Bot 65(13):3459–3470

    Article  Google Scholar 

  85. Gillon JS, Griffiths H (1997) The influence of (photo)respiration on carbon isotope discrimination in plants. Plant Cell Environ 20(10):1217–1230

    Article  Google Scholar 

  86. Lanigan GJ, Betson N, Griffiths H, Seibt U (2008) Carbon isotope fractionation during photorespiration and carboxylation in Senecio. Plant Physiol 148(4):2013–2020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Rooney MA (1988) Short-term carbon isotope fractionation by plants. PhD thesis, University of Wisconsin, Madison, WI

    Google Scholar 

  88. Igamberdiev AU, Mikkelsen TN, Ambus P, Bauwe H, Lea PJ, Gardestrom P (2004) Photorespiration contributes to stomatal regulation and carbon isotope fractionation: a study with barley, potato and Arabidopsis plants deficient in glycine decarboxylase. Photosynth Res 81:139–152

    Article  CAS  Google Scholar 

  89. Tcherkez G (2006) How large is the carbon isotope fractionation of the photorespiratory enzyme glycine decarboxylase? Funct Plant Biol 33(10):911–920

    Article  CAS  PubMed  Google Scholar 

  90. Tcherkez G, Schaufele R, Nogués S, Piel C, Boom A, Lanigan G, Barbaroux C, Mata C, Elhani S, Hemming D (2010) On the 13C/12C isotopic signal of day and night respiration at the mesocosm level. Plant Cell Environ 33:900–913

    Article  PubMed  CAS  Google Scholar 

  91. Tcherkez G, Farquhar G, Badeck F, Ghashghaie J (2004) Theoretical considerations about carbon isotope distribution in glucose of C3 plants. Funct Plant Biol 31(9):857–877

    Article  CAS  PubMed  Google Scholar 

  92. Tcherkez G, Mauve C, Lamothe M, Le Bras C, Grapin A (2011) The 13C/12C isotopic signal of day-respired CO2 in variegated leaves of Pelargonium × hortorum. Plant Cell Environ 34:270–283

    Article  PubMed  CAS  Google Scholar 

  93. Ghashghaie J, Duranceau M, Badeck FW, Cornic G, Adeline MT, Deleens E (2001) δ13C of CO2 respired in the dark in relation to δ13C of leaf metabolites: comparison between Nicotiana sylvestris and Helianthus annuus under drought. Plant Cell Environ 24(5):505–515

    Article  CAS  Google Scholar 

  94. Bathellier C, Badeck FW, Couzi P, Harscoet S, Mauve C, Ghashghaie J (2008) Divergence in δ13C of dark respired CO2 and bulk organic matter occurs during the transition between heterotrophy and autotrophy in Phaseolus vulgaris plants. New Phytol 177(2):406–418

    PubMed  CAS  Google Scholar 

  95. Sun W, Resco V, Williams DG (2010) Nocturnal and seasonal patterns of carbon isotope composition of leaf dark-respired carbon dioxide differ among dominant species in a semiarid savanna. Oecologia 164(2):297–310

    Article  PubMed  Google Scholar 

  96. Stutz S, Edwards GE, Cousins AB (2014) Single-cell C4 photosynthesis: efficiency and acclimation of Bienertia sinuspersici to growth under low light. Plant Physiol 202:220–234

    CAS  Google Scholar 

  97. Kromdijk J, Griffiths H, Schepers HE (2010) Can the progressive increasse of C4 bundle-sheath leakiness at low PFD be explained by incomplete supression of photorespiration? Plant Cell Environ 33:1935–1948

    Article  PubMed  CAS  Google Scholar 

  98. Evans JR, von Caemmerer S (1996) Carbon dioxide diffusion inside leaves. Plant Physiol 110(2):339–346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Flexas J, Ribas-Carbó M, Díaz-Espejo A, Galmés J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31(5):602–621

    Article  PubMed  CAS  Google Scholar 

  100. Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ 27(2):137–153

    Article  CAS  Google Scholar 

  101. Niinemets Ü, Díaz-Espejo A, Flexas J, Galmés J, Warren CR (2009) Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J Exp Bot 60(8):2249–2270

    Article  PubMed  CAS  Google Scholar 

  102. Piel C, Frak E, Le Roux X, Genty B (2002) Effect of local irradiance on CO2 transfer conductance of mesophyll in walnut. J Exp Bot 53(379):2423–2430

    Article  PubMed  CAS  Google Scholar 

  103. Pérez-Martín A, Flexas J, Ribas-Carbó M, Bota J, Tomas M, Infante JM, Díaz-Espejo A (2009) Interactive effects of soil water deficit and air vapour pressure deficit on mesophyll conductance to CO2 in Vitis vinifera and Olea europaea. J Exp Bot 60:2391–2405

    Article  PubMed  CAS  Google Scholar 

  104. Loreto F, Centritto M, Chartzoulakis K (2003) Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. Plant Cell Environ 26(4):595–601

    Article  CAS  Google Scholar 

  105. von Caemmerer S, Evans JR (2015) Temperature responses of mesophyll conductance differ greatly between species. Plant Cell Environ 38:629–637

    Article  CAS  Google Scholar 

  106. Pons TL, Flexas J, von Caemmerer S, Evans JR, Genty B, Ribas-Carbó M, Brugnoli E (2009) Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. J Exp Bot 60(8):2217–2234

    Article  PubMed  CAS  Google Scholar 

  107. Warren CR (2008) Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. J Exp Bot 59:1475–1148

    Article  PubMed  CAS  Google Scholar 

  108. Loreto F, Harley PC, Dimarco G, Sharkey TD (1992) Estimation of mesophyll conductance to CO2 flux by three different methods. Plant Physiol 98(4):1437–1443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Sharkey TD, Vassey TL, Vanderveer PJ, Vierstra RD (1991) Carbon metabolism enzymes and photosynthesis in transgenic tobacco (Nicotiana tabaccum L.) having excess phytochrome. Planta 185:287–296

    Article  PubMed  CAS  Google Scholar 

  110. Lloyd J, Syvertsen JP, Kriedemann PE, Farquhar GD (1992) Low conductances for CO2 diffusion from stomata to the sites of carboxylation in leaves of woody species. Plant Cell Environ 15(8):873–899

    Article  CAS  Google Scholar 

  111. Flexas J, Ribas-Carbó M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J 48(3):427–439

    Article  PubMed  CAS  Google Scholar 

  112. Hassiotou F, Ludwig M, Renton M, Veneklaas EJ, Evans JR (2009) Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls. J Exp Bot 60(8):2303–2314

    Article  PubMed  CAS  Google Scholar 

  113. Warren CR, Low M, Matyssek R, Tausz M (2007) Internal conductance to CO2 transfer of adult Fagus sylvatica: variation between sun and shade leaves and due to free-air ozone fumigation. Environ Exp Bot 59(2):130–138

    Article  CAS  Google Scholar 

  114. Brugnoli E, Lauteri M, Guido MC (1994) Carbon isotope discrimination and photosynthesis: response and adaptation to environmental stress. In: de Kouchkovsky Y, Larher F (eds) Plant sciences, second general colloquium on plant sciences. Renners, SFPV, Universite de Renners, pp 269–272

    Google Scholar 

  115. Scartazza A, Lauteri M, Guido MC, Brugnoli E (1998) Carbon isotope discrimination in leaf and stem sugars, water-use efficiency and mesophyll conductance during different developmental stages in rice subjected to drought. Aust J Plant Physiol 25:489–498

    Article  CAS  Google Scholar 

  116. Monti A, Brugnoli E, Scartazza A, Amaducci MT (2006) The effect of transient and continuous drought on yield, photosynthesis and carbon isotope discrimination in sugar beet (Beta vulgaris L). J Exp Bot 57(6):1253–1262

    Article  PubMed  CAS  Google Scholar 

  117. Kromdijk J, Ubierna N, Cousins AB, Griffiths H (2014) Bundle-sheath leakiness in C4 photosynthesis: a careful balancing act between CO2 concentration and assimilation. J Exp Bot 65(13):3443–3457

    Article  PubMed  Google Scholar 

  118. Pengelly JJL, Sirault XRR, Tazoe Y, Evans JR, Furbank RT, von Caemmerer S (2010) Growth of the C4 dicot Flaveria bidentis: photosynthetic acclimation to low light through shifts in leaf anatomy and biochemistry. J Exp Bot 61(14):4109–4122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Bellasio C, Griffiths H (2014) Acclimation to low light by C4 maize: implications for bundle sheath leakiness. Plant Cell Environ 37(5):1046–1058

    Article  PubMed  CAS  Google Scholar 

  120. Ubierna N, Sun W, Cousins AB (2011) The efficiency of C4 photosynthesis under low light conditions: assumptions and calculations with CO2 isotope discrimination. J Exp Bot 62(9):3119–3134

    Article  PubMed  CAS  Google Scholar 

  121. Furbank RT, Hatch MD (1987) Mechanism of C4 photosynthesis - the size and composition of the inorganic carbon pool in bundle-sheath cells. Plant Physiol 85(4):958–964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. He DX, Edwards GE (1996) Estimation of diffusive resistance of bundle-sheath cells to CO2 from modeling of C4 photosynthesis. Photosynth Res 49(3):195–208

    Article  PubMed  CAS  Google Scholar 

  123. von Caemmerer S, Furbank RT (2003) The C4 pathway: an efficient CO2 pump. Photosynth Res 77(2–3):191–207

    Article  Google Scholar 

  124. Yin X, van der Putten PEL, Driever SM, Struik PC (2016) Temperature response of bundle-sheath conductance in maize leaves. J Exp Bot 67(9):2699–2714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Gong XY, Schäufele R, Schnyder H (2016) Bundle-sheath leakiness and intrinsic water use efficiency of a perennial C4 grass are increased at high vapour pressure deficit during growth. J Exp Bot 68(2):321–333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Stryer L (1988) Biochemistry. W. H. Freeman, New York

    Google Scholar 

  127. Cousins AB, Badger MR, von Caemmerer S (2008) C4 photosynthetic isotope exchange in NAD-ME- and NADP-ME-type grasses. J Exp Bot 59(7):1695–1703

    Article  PubMed  CAS  Google Scholar 

  128. Tcherkez BR, Gout E, Mahe A, Hodges M, Cornic G (2008) Respiratory metabolism of illuminated leaves depends on CO2 and O2 conditions. Proc Natl Acad Sci 105:797–802

    Article  PubMed  PubMed Central  Google Scholar 

  129. Yin X, Sun Z, Struik PC, Gu J (2011) Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements. J Exp Bot 62:3489–3499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Bellasio C, Griffiths H (2014) Acclimation of C4 metabolism to low light in mature maize leaves could limit energetic losses during progressive shading in a crop canopy. J Exp Bot 65(13):3725–3736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Gong XY, Schäufele R, Feneis W, Schnyder H (2015) 13CO2/12CO2 exchange fluxes in a clamp-on leaf cuvette: disentangling artefacts and flux components. Plant Cell Environ 38:2417–2432

    Article  PubMed  CAS  Google Scholar 

  132. Ghannoum O, Evans JR, Chow WS, Andrews TJ, Conroy JP, von Caemmerer S (2005) Faster rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme relative to NAD-malic enzyme C4 grasses. Plant Physiol 137:638–650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Berry JA, Farquhar GD (1978) The CO2 concentrating function of C4 photosynthesis: a biochemical model. In: Hall D, Coombs J, Goodwin T (eds) Proc. 4th Int. Congr. Photosynthesis, Reading, England 1977 Biochem., Soc., London. pp 119–131

    Google Scholar 

  134. Osborn HL, Alonso-Cantabrana H, Sharwood RE, Covshoff S, Evans JR, Furbank RT, von Caemmerer S (2017) Effects of reduced carbonic anhydrase activity on CO2 assimilation rates in Setaria viridis: a transgenic analysis. J Exp Bot 68(2):299–310

    Article  PubMed  CAS  Google Scholar 

  135. Ubierna N, Gandin A, Cousins AB (2018) The response of mesophyll conductance to short-term variation in CO2 in the C4 plants Setaria viridis and Zea mays. J Exp Bot, 69(5), 1159–1170

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ubierna, N., Holloway-Phillips, MM., Farquhar, G.D. (2018). Using Stable Carbon Isotopes to Study C3 and C4 Photosynthesis: Models and Calculations. In: Covshoff, S. (eds) Photosynthesis. Methods in Molecular Biology, vol 1770. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7786-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7786-4_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7785-7

  • Online ISBN: 978-1-4939-7786-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics