Skip to main content

Identification of Chromothripsis in Biopsy Using SNP-Based Microarray

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1769))

Abstract

One of the well-known hallmarks of cancer is genomic instability. Although gradualism is a well-established process of cancer evolution, recent studies have shown that chromothripsis or chromoanasynthesis can result in complex genomic rearrangements by a single catastrophic event rather than several incremental steps. These two novel phenomena suggest an evolutionary modality for cancer cells to circumvent individual mutational events with one simultaneous shattering of chromosomes or chromosome regions resulting in the random reassembling of shattered genetic material to form complex derivative chromosomes. Although sequencing methods are ideal for the detection of chromothripsis, single-nucleotide polymorphism (SNP)-based microarray methods are also useful in detecting chromothripsis in biopsy samples. Issues related to sample collection, storage, and transport, especially with tumor biopsies, may limit the options for sequencing studies, and in such cases, SNP-based microarray may be a viable alternative for detecting chromothripsis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481:306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  CAS  PubMed  Google Scholar 

  3. Yates LR, Campbell PJ (2012) Evolution of the cancer genome. Nat Rev Genet 13:795–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mitelman F, Johansson B, Mertens F (2007) The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7:233–245

    Article  CAS  PubMed  Google Scholar 

  5. Rabbits TH (2009) Commonality but diversity in cancer gene fusions. Cell 137:391–395

    Article  Google Scholar 

  6. Stephens PJ, McBride DJ, Lin ML et al (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462:1005–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458:719–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baca SC, Prandi D, Lawrence MS et al (2013) Punctuated evolution of prostate cancer genomes. Cell 153:666–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu P, Erez A, Nagamani SC et al (2011) Chromosome catastophes involve replication mechanisms generating complex genomic rearrangements. Cell 146:889–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rausch T, Jones DT, Zapatka M et al (2012) Genomic sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148:59–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangements acquired in a single catastrophic event during cancer development. Cell 144:27–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Foremont JV, Kaidi A, Jackson SP (2012) Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 12:663–670

    Article  Google Scholar 

  13. Jone MJ, Jallepalli PV (2012) Chromothripsis: chromosomes in crisis. Dev Cell 23:908–917

    Article  Google Scholar 

  14. Maher CA, Wilson RK (2012) Chromothripsis and human disease: piecing together the shattering process. Cell 148:29–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meyerson M, Pellman D (2011) Cancer genomes evolve by pulverizing single chromosomes. Cell 144:9–10

    Article  CAS  PubMed  Google Scholar 

  16. Tubio JM, Estivill X (2011) Cancer: when catastrophe strikes a cell. Nature 470:476–477

    Article  CAS  PubMed  Google Scholar 

  17. Holland AJ, Cleveland DW (2012) Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat Med 18:1630–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rode A, Maass KK, Willmund KV et al (2016) Chromothripsis in cancer cells: an update. Int J Cancer 138:2322–2333

    Article  CAS  PubMed  Google Scholar 

  19. Ortega V, Chaubey A, Mendiola C et al (2016) Complex chromosomal rearrangements in B-cell lymphoma: evidence of chromoanagenesis? A case report. Neoplasia 18:223–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kloosterman WP, Koster J, Molenaar JJ (2014) Prevalence and clinical implications of chromothripsis in cancer genomes. Curr Opin Oncol 26:64–72

    Article  CAS  PubMed  Google Scholar 

  21. Kinsella M, Patel A, Bafna V (2014) The elusive evidence for chromothripsis. Nucleic Acids Res 42:8231–8242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors express their sincere gratitude to Affymetrix (Thermo Fisher Scientific), especially to Dr. Clint VanValkenburgh, Alan Silverman, Dr. Xiaowen Rudner-Hobden, and Corina Nikolof for helpful suggestions, for assistance in validating and establishing the assay, and for continued technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopalrao V. N. Velagaleti Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ortega, V., Mendiola, C., Velagaleti, G.V.N. (2018). Identification of Chromothripsis in Biopsy Using SNP-Based Microarray. In: Pellestor, F. (eds) Chromothripsis. Methods in Molecular Biology, vol 1769. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7780-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7780-2_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7779-6

  • Online ISBN: 978-1-4939-7780-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics