Skip to main content

Study of Telomere Dysfunction in TP53 Mutant LoVo Cell Lines as a Model for Genomic Instability

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1769))

Abstract

Telomere restriction fragment, 3D quantitative FISH on nuclei, and quantitative FISH on metaphases are complementary approaches that explore telomere dysfunction genomically, cellularly, and chromosomally, respectively. We used these approaches to study association between telomere dysfunction and degree of genomic instability related to TP53 mutations in LoVo isogenic cell lines. We found a strong correlation between degree of genomic instability, telomere dysfunction, and specific mutations of TP53. The use of complementary approaches to study telomere biology is essential to have a comprehensive understanding of telomere involvement in genomic instability.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Benetti R, Garcia-Cao M, Blasco MA (2007) Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet 39:243–250. https://doi.org/10.1038/ng1952

    Article  CAS  PubMed  Google Scholar 

  2. Moyzis RK, Buckingham JM, Cram LS et al (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 85:6622–6626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chong L, van Steensel B, Broccoli D et al (1995) A human telomeric protein. Science 270:1663–1667

    Article  CAS  PubMed  Google Scholar 

  4. De Lange T, Shiue L, Myers RM et al (1990) Structure and variability of human chromosome ends. Mol Cell Biol 10:518–527

    Article  PubMed  PubMed Central  Google Scholar 

  5. Blasco MA, Lee HW, Hande MP et al (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34

    Article  CAS  PubMed  Google Scholar 

  6. Chuang TCY, Moshir S, Garini Y et al (2004) The three-dimensional organization of telomeres in the nucleus of mammalian cells. BMC Biol 2:12. https://doi.org/10.1186/1741-7007-2-12

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mai S, Garini Y (2005) Oncogenic remodeling of the three-dimensional organization of the interphase nucleus: c-Myc induces telomeric aggregates whose formation precedes chromosomal rearrangements. Cell Cycle 4:1327–1331

    Article  CAS  PubMed  Google Scholar 

  8. Louis SF, Vermolen BJ, Garini Y et al (2005) c-Myc induces chromosomal rearrangements through telomere and chromosome remodeling in the interphase nucleus. Proc Natl Acad Sci U S A 102:9613–9618. https://doi.org/10.1073/pnas.0407512102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hande MP, Samper E, Lansdorp P et al (1999) Telomere length dynamics and chromosomal instability in cells derived from telomerase null mice. J Cell Biol 144:589–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Artandi SE, Chang S, Lee SL et al (2000) Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406:641–645. https://doi.org/10.1038/35020592

    Article  CAS  PubMed  Google Scholar 

  11. Mc CB (1939) The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc Natl Acad Sci U S A 25:405–416

    Article  Google Scholar 

  12. Maciejowski J, de Lange T (2017) Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol 18:175–186. https://doi.org/10.1038/nrm.2016.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yates LR, Campbell PJ (2012) Evolution of the cancer genome. Nat Rev Genet 13:795–806. https://doi.org/10.1038/nrg3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Davoli T, Denchi EL, de Lange T (2010) Persistent telomere damage induces bypass of mitosis and tetraploidy. Cell 141:81–93. https://doi.org/10.1016/j.cell.2010.01.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davoli T, de Lange T (2012) Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Cancer Cell 21:765–776. https://doi.org/10.1016/j.ccr.2012.03.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rausch T, Jones DTW, Zapatka M et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148:59–71. https://doi.org/10.1016/j.cell.2011.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Samassekou O, Bastien N, Lichtensztejn D et al (2014) Different TP53 mutations are associated with specific chromosomal rearrangements, telomere length changes, and remodeling of the nuclear architecture of telomeres. Genes Chromosomes Cancer 53:934–950. https://doi.org/10.1002/gcc.22205

    Article  CAS  PubMed  Google Scholar 

  18. Vermolen BJ, Garini Y, Mai S et al (2005) Characterizing the three-dimensional organization of telomeres. Cytometry A 67:144–150. https://doi.org/10.1002/cyto.a.20159

    Article  CAS  PubMed  Google Scholar 

  19. Lansdorp PM, Verwoerd NP, van de Rijke FM et al (1996) Heterogeneity in telomere length of human chromosomes. Hum Mol Genet 5:685–691

    Article  CAS  PubMed  Google Scholar 

  20. Londono-Vallejo JA, DerSarkissian H, Cazes L et al (2001) Differences in telomere length between homologous chromosomes in humans. Nucleic Acids Res 29:3164–3171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Samassekou O, Ntwari A, Hebert J et al (2009) Individual telomere lengths in chronic myeloid leukemia. Neoplasia 11:1146–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pocard M, Chevillard S, Villaudy J et al (1996) Different p53 mutations produce distinct effects on the ability of colon carcinoma cells to become blocked at the G1/S boundary after irradiation. Oncogene 12:875–882

    CAS  PubMed  Google Scholar 

  23. Dridi W, Fetni R, Lavoie J et al (2003) The dominant-negative effect of p53 mutants and p21 induction in tetraploid G1 arrest depends on the type of p53 mutation and the nature of the stimulus. Cancer Genet Cytogenet 143:39–49

    Article  CAS  PubMed  Google Scholar 

  24. Masramon L, Ribas M, Cifuentes P et al (2000) Cytogenetic characterization of two colon cell lines by using conventional G-banding, comparative genomic hybridization, and whole chromosome painting. Cancer Genet Cytogenet 121:17–21

    Article  CAS  PubMed  Google Scholar 

  25. Schaefer LH, Schuster D, Herz H (2001) Generalized approach for accelerated maximum likelihood based image restoration applied to three-dimensional fluorescence microscopy. J Microsc 204:99–107

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Régen Drouin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Samassekou, O., Bastien, N., Yan, J., Mai, S., Drouin, R. (2018). Study of Telomere Dysfunction in TP53 Mutant LoVo Cell Lines as a Model for Genomic Instability. In: Pellestor, F. (eds) Chromothripsis. Methods in Molecular Biology, vol 1769. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7780-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7780-2_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7779-6

  • Online ISBN: 978-1-4939-7780-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics