Skip to main content
Book cover

Digital PCR pp 387–400Cite as

Simultaneous Quantification of Multiple Alternatively Spliced mRNA Transcripts Using Droplet Digital PCR

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1768))

Abstract

Currently there is no sensitive, precise, and reproducible method to quantitate alternative splicing of mRNA transcripts. Droplet digital™ PCR (ddPCR™) analysis allows for accurate digital counting for quantification of gene expression. Human telomerase reverse transcriptase (hTERT) is one of the essential components required for telomerase activity and for the maintenance of telomeres. Several alternatively spliced forms of hTERT mRNA in human primary and tumor cells have been reported in the literature. Using one pair of primers and two probes for hTERT, four alternatively spliced forms of hTERT (α−/β+, α+/β− single deletions, α−/β− double deletion, and nondeletion α+/β+) were accurately quantified through a novel analysis method via data collected from a single ddPCR reaction. In this chapter, we describe this ddPCR method that enables direct quantitative comparison of four alternatively spliced forms of the hTERT messenger RNA without the need for internal standards or multiple pairs of primers specific for each variant, eliminating the technical variation due to differential PCR amplification efficiency for different amplicons and the challenges of quantification using standard curves. This simple and straightforward method should have general utility for quantifying alternatively spliced gene transcripts.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Matlin AJ, Clark F, Smith CWJ (2005) Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6:386–398

    Article  CAS  Google Scholar 

  2. Hong M, Zhukareva V, Vogelsberg-Ragaglia V et al (1998) Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282:1914–1917

    Article  CAS  Google Scholar 

  3. Lefebvre S, Burglen L, Reboullet S et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165

    Article  CAS  Google Scholar 

  4. Faustino NA, Cooper TA (2003) Pre-mRNA splicing and human disease. Genes Dev 17:419–437

    Article  CAS  Google Scholar 

  5. Cáceres JF, Kornblihtt AR (2002) Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet 18:186–193

    Article  Google Scholar 

  6. Ulaner GA, JF H, TH V et al (1998) Telomerase activity in human development is regulated by human telomerase reverse transcriptase (hTERT) transcription and by alternate splicing of hTERT transcripts. Cancer Res 58:4168–4172

    CAS  PubMed  Google Scholar 

  7. Colgin LM, Wilkinson C, Englezou A et al (2000) The hTERTalpha splice variant is a dominant negative inhibitor of telomerase activity. Neoplasia 2:426–432

    Article  CAS  Google Scholar 

  8. Listerman I, Sun J, Gazzaniga FS et al (2013) The major reverse transcriptase-incompetent splice variant of the human telomerase protein inhibits telomerase activity but protects from apoptosis. Cancer Res 73:2817–2828

    Article  CAS  Google Scholar 

  9. Lincz LF, Mudge LM, Scorgie FE et al (2008) Quantification of hTERT splice variants in melanoma by SYBR green real-time polymerase chain reaction indicates a negative regulatory role for the beta deletion variant. Neoplasia 10:1131–1137

    Article  CAS  Google Scholar 

  10. Liu Y, BQ W, Zhong HH et al (2012) Quantification of alternative splicing variants of human telomerase reverse transcriptase and correlations with telomerase activity in lung cancer. PLoS One 7:e38868

    Article  CAS  Google Scholar 

  11. Fujiwara-Akita H, Maesawa C, Honda T et al (2005) Expression of human telomerase reverse transcriptase splice variants is well correlated with low telomerase activity in osteosarcoma cell lines. Int J Oncol 26:1009–1016

    CAS  PubMed  Google Scholar 

  12. Zaffaroni N, Villa R, Pastorino U et al (2005) Lack of telomerase activity in lung carcinoids is dependent on human telomerase reverse transcriptase transcription and alternative splicing and is associated with long telomeres. Clin Cancer Res 11:2832–2839

    Article  CAS  Google Scholar 

  13. Yi X, Shay JW, Wright WE (2001) Quantitation of telomerase components and hTERT mRNA splicing patterns in immortal human cells. Nucleic Acids Res 29:4818–4825

    Article  CAS  Google Scholar 

  14. Ohyashiki JH, Hisatomi H, Nagao K et al (2005) Quantitative relationship between functionally active telomerase and major telomerase components (hTERT and hTR) in acute leukaemia cells. Br J Cancer 92:1942–1947

    Article  CAS  Google Scholar 

  15. Mavrogiannou E, Strati A, Stathopoulou A et al (2007) Real-time RT-PCR quantification of human telomerase reverse transcriptase splice variants in tumor cell lines and non-small cell lung cancer. Clin Chem 53:53–61

    Article  CAS  Google Scholar 

  16. Hara T, Noma T, Yamashiro Y et al (2001) Quantitative analysis of telomerase activity and telomerase reverse transcriptase expression in renal cell carcinoma. Urol Res 29:1–6

    Article  CAS  Google Scholar 

  17. Hindson BJ, Ness KD, Masquelier DA et al (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610

    Article  CAS  Google Scholar 

  18. Ulaner GA, JF H, TH V et al (2000) Regulation of telomerase by alternate splicing of human telomerase reverse transcriptase (hTERT) in normal and neoplastic ovary, endometrium and myometrium. Int J Cancer 85:330–335

    Article  CAS  Google Scholar 

  19. Hoare SF, Bryce LA, Wisman GBA et al (2001) Lock of telomerase RNA gene hTERC expression in alternative lengthening of telomere cells is associated with methylation of the hTERC promoter. Cancer Res 61:27–32

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in YLZ’s laboratory is supported by grants from the National Cancer Institute of the National Institutes of Health (R01CA132996) and Susan G. Komen for the Cure (KG100283).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Ling Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sun, B., Zheng, YL. (2018). Simultaneous Quantification of Multiple Alternatively Spliced mRNA Transcripts Using Droplet Digital PCR. In: Karlin-Neumann, G., Bizouarn, F. (eds) Digital PCR. Methods in Molecular Biology, vol 1768. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7778-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7778-9_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7776-5

  • Online ISBN: 978-1-4939-7778-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics