Skip to main content

Novel Multiplexing Strategies for Quantification of Rare Alleles Using ddPCR

  • Protocol
  • First Online:
Digital PCR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1768))

  • 4984 Accesses

Abstract

Droplet digital PCR (ddPCR) has come to be regarded as the gold standard for the ultrasensitive detection and absolute quantification of closely related DNA sequences within complex mixtures. Most ddPCR assays to date, however, rely on sets of hydrolysis probes conjugated with dyes having different emission spectra to allow independent counting of rare mutant and wild-type alleles. Here, we describe a set of novel strategies that leverage the simultaneous detection and quantification of both mutant and wild-type alleles with a single hydrolysis probe. Variants of these strategies empower multiplexing and a more cost-effective approach for concurrent screening of multiple genetic variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Everett TR, Chitty LS (2015) Cell-free fetal DNA: the new tool in fetal medicine. Ultrasound Obstet Gynecol 45:499–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liao GJW, Gronowski AM, Zhao Z (2014) Non-invasive prenatal testing using cell-free fetal DNA in maternal circulation. Clin Chim Acta 428:44–50

    Article  CAS  PubMed  Google Scholar 

  3. Bettegowda C et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6:224ra24

    Article  PubMed  PubMed Central  Google Scholar 

  4. Heitzer E, Ulz P, Geigl JB (2015) Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem 61:112–123

    Article  CAS  PubMed  Google Scholar 

  5. Volik S, Alcaide M, Morin RD, Collins CC (2016) Cell-free DNA (cfDNA): clinical significance and utility in cancer shaped by emerging technologies. Mol Cancer Res 14(10):898. https://doi.org/10.1158/1541-7786.MCR-16-0044

    Article  CAS  PubMed  Google Scholar 

  6. Ramírez-Castillo FY et al (2015) Waterborne pathogens: detection methods and challenges. Pathogens 4:307–334

    Article  PubMed  PubMed Central  Google Scholar 

  7. Whale AS et al (2016) Detection of rare drug resistance mutations by digital PCR in a human influenza A virus model system and clinical samples. J Clin Microbiol 54:392–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Opota O, Jaton K, Greub G (2015) Microbial diagnosis of bloodstream infection: towards molecular diagnosis directly from blood. Clin Microbiol Infect 21:323–331

    Article  CAS  PubMed  Google Scholar 

  9. Prachayangprecha S et al (2014) Exploring the potential of next-generation sequencing in detection of respiratory viruses. J Clin Microbiol 52:3722–3730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fu W et al (2015) A highly sensitive and specific method for the screening detection of genetically modified organisms based on digital PCR without pretreatment. Sci Rep 5:12715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reid AL, Freeman JB, Millward M, Ziman M, Gray ES (2015) Detection of BRAF-V600E and V600K in melanoma circulating tumour cells by droplet digital PCR. Clin Biochem 48:999–1002

    Article  CAS  PubMed  Google Scholar 

  12. Mukaide M et al (2014) High-throughput and sensitive next-generation droplet digital PCR assay for the quantitation of the hepatitis C virus mutation at core amino acid 70. J Virol Methods 207:169–177

    Article  CAS  PubMed  Google Scholar 

  13. Kennedy SR et al (2014) Detecting ultralow-frequency mutations by Duplex Sequencing. Nat Protoc 9:2586–2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Newman AM et al (2016) Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol 34:547–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vogelstein B, Kinzler KW (1999) Digital PCR. Proc Natl Acad Sci U S A 96:9236–9241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dong L et al (2015) Comparison of four digital PCR platforms for accurate quantification of DNA copy number of a certified plasmid DNA reference material. Sci Rep 5:13174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dingle TC, Sedlak RH, Cook L, Jerome KR (2013) Tolerance of droplet-digital PCR versus real-time quantitative PCR to inhibitory substances. Clin Chem 59:1670–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rački N, Dreo T, Gutierrez-Aguirre I, Blejec A, Ravnikar M (2014) Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples. Plant Methods 10:42

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive review of genetic association studies. Genet Med 4:45–61

    Article  CAS  PubMed  Google Scholar 

  20. Chang MT et al (2016) Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat Biotechnol 34:155–163

    Article  CAS  PubMed  Google Scholar 

  21. Hawkey PM (2008) The growing burden of antimicrobial resistance. J Antimicrob Chemother 62(Suppl 1):i1–i9

    Article  CAS  PubMed  Google Scholar 

  22. Madic J et al (2016) Three-color crystal digital PCR. Biomol Detect Quantif 10:34. https://doi.org/10.1016/j.bdq.2016.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Whale AS, Huggett JF, Tzonev S (2016) Fundamentals of multiplexing with digital PCR. Biomol Detect Quantif 10:15. https://doi.org/10.1016/j.bdq.2016.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bidshahri R et al (2016) Quantitative detection and resolution of BRAF V600 status in colorectal cancer using droplet digital PCR and a novel wildtype negative assay. J Mol Diagn 18:190–204

    Article  CAS  PubMed  Google Scholar 

  25. Findlay SD, Vincent KM, Berman JR, Postovit L-M (2016) A digital PCR-based method for efficient and highly specific screening of genome edited cells. PLoS One 11:e0153901

    Article  PubMed  PubMed Central  Google Scholar 

  26. Taly V et al (2013) Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem 59:1722–1731

    Article  CAS  PubMed  Google Scholar 

  27. Alcaide M et al (2016) Multiplex droplet digital PCR quantification of recurrent somatic mutations in diffuse large B-cell and follicular lymphoma. Clin Chem 62(9):1238–1247. https://doi.org/10.1373/clinchem.2016.255315

    Article  CAS  PubMed  Google Scholar 

  28. Sikora A et al (2010) Detection of increased amounts of cell-free fetal DNA with short PCR amplicons. Clin Chem 56:136–138

    Article  CAS  PubMed  Google Scholar 

  29. Andersen RF, Spindler K-LG, Brandslund I, Jakobsen A, Pallisgaard N (2015) Improved sensitivity of circulating tumor DNA measurement using short PCR amplicons. Clin Chim Acta 439:97–101

    Article  CAS  PubMed  Google Scholar 

  30. Miyaoka Y et al (2016) Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep 6:23549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pantel K, Diaz LAJ, Polyak K (2013) Tracking tumor resistance using ‘liquid biopsies. Nat Med 19:676–677

    Article  PubMed  Google Scholar 

  32. Barber LJ, Davies MN, Gerlinger M (2015) Dissecting cancer evolution at the macro-heterogeneity and micro-heterogeneity scale. Curr Opin Genet Dev 30:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lievens A, Jacchia S, Kagkli D, Savini C, Querci M (2016) Measuring digital PCR quality: performance parameters and their optimization. PLoS One 11:e0153317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Canadian Institute for Health Research (CIHR) (New Investigator award and operating grant 300738), the Terry Fox Research Institute (projects #1043 and #1021), the Natural Sciences and Engineering Research Council of Canada (Research Tools and Instruments program EQPEQ 1501), and the BC Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan D. Morin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alcaide, M., Morin, R.D. (2018). Novel Multiplexing Strategies for Quantification of Rare Alleles Using ddPCR. In: Karlin-Neumann, G., Bizouarn, F. (eds) Digital PCR. Methods in Molecular Biology, vol 1768. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7778-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7778-9_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7776-5

  • Online ISBN: 978-1-4939-7778-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics