Skip to main content

Droplet Digital PCR for Minimal Residual Disease Detection in Mature Lymphoproliferative Disorders

  • Protocol
  • First Online:
Digital PCR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1768))

Abstract

Minimal residual disease (MRD) detection has a powerful prognostic relevance for response evaluation and prediction of relapse in hematological malignancies. Real-time quantitative PCR (qPCR) has become the settled and standardized method for MRD assessment in lymphoid disorders. However, qPCR is a relative quantification approach, since it requires a reference standard curve. Droplet digitalTM PCR (ddPCRTM) allows a reliable absolute tumor burden quantification withdrawing the need for preparing, for each experiment, a tumor-specific standard curve. We have recently shown that ddPCR has a good concordance with qPCR and could be a feasible and reliable tool for MRD monitoring in mature lymphoproliferative disorders. In this chapter we describe the experimental workflow, from the detection of the clonal molecular marker to the MRD monitoring by ddPCR, in patients affected by multiple myeloma, mantle cell lymphoma and follicular lymphoma. However, standardization programs among different laboratories are needed in order to ensure the reliability and reproducibility of ddPCR-based MRD results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen NS, Pedersen LB, Laurell A et al (2009) Pre-emptive treatment with rituximab of molecular relapse after autologous stem cell transplantation in mantle cell lymphoma. J Clin Oncol 27:4365–4370

    Article  CAS  Google Scholar 

  2. Ladetto M, Pagliano G, Ferrero S et al (2010) Major tumor shrinking and persistent molecular remissions after consolidation with bortezomib, thalidomide, and dexamethasone in patients with autografted myeloma. J Clin Oncol 28:2077–2084

    Article  CAS  Google Scholar 

  3. Pott C, Hoster E, Delfau-Larue MH et al (2010) Molecular remission is an independent predictor of clinical outcome in patients with mantle cell lymphoma after combined immunochemotherapy: a European MCL intergroup study. Blood 115:3215–3223

    Article  CAS  Google Scholar 

  4. Pott C (2011) Minimal residual disease detection in mantle cell lymphoma: technical aspects and clinical relevance. Semin Hematol 48:172–184

    Article  Google Scholar 

  5. Korthals M, Sehnke N, Kronenwett R et al (2012) The level of minimal residual disease in the bone marrow of patients with multiple myeloma before high-dose therapy and autologous blood stem cell transplantation is an independent predictive parameter. Biol Blood Marrow Transplant 18:423–431

    Article  Google Scholar 

  6. Ladetto M, Lobetti-Bodoni C, Mantoan B et al (2013) Persistence of minimal residual disease in bone marrow predicts outcome in follicular lymphomas treated with a rituximab-intensive program. Blood 122:3759–3766

    Article  CAS  Google Scholar 

  7. Ferrero S, Ladetto M, Drandi D et al (2015) Long-term results of the GIMEMA VEL-03-096 trial in MM patients receiving VTD consolidation after ASCT: MRD kinetics’ impact on survival. Leukemia 29(3):689–695

    Article  CAS  Google Scholar 

  8. Ladetto M, Ferrero S, Drandi D et al (2016) Prospective molecular monitoring of minimal residual disease after non-myeloablative allografting in newly diagnosed multiple myeloma. Leukemia 30(5):1211–1214

    Article  Google Scholar 

  9. Gribben JG, Freedman A, Woo SD et al (1991) All advanced stage non-Hodgkin's lymphomas with a polymerase chain reaction amplifiable breakpoint of bcl-2 have residual cells containing the bcl-2 rearrangement at evaluation and after treatment. Blood 78(12):3275–3280

    CAS  PubMed  Google Scholar 

  10. van Dongen JJ, Langerak AW, Bruggemann M et al (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 concerted action BMH4-CT98-3936. Leukemia 17:2257–2317

    Article  Google Scholar 

  11. Rimokh R, Berger F, Delsol G et al (1994) Detection of the chromosomal translocation t(11;14) by polymerase chain reaction in mantle cell lymphomas. Blood 83(7):1871–1875

    CAS  PubMed  Google Scholar 

  12. Ladetto M, Donovan JW, Harig S et al (2000) Real-time polymerase chain reaction of immunoglobulin rearrangements for quantitative evaluation of minimal residual disease in multiple myeloma. Biol Blood Marrow Transplant 6:241–253

    Article  CAS  Google Scholar 

  13. Brüggemann M, Droese J, Bolz I et al (2000) Improved assessment of minimal residual disease in B cell malignancies using fluorogenic consensus probes for real-time quantitative PCR. Leukemia 14:1419–1425

    Article  Google Scholar 

  14. van der Velden VH, Cazzaniga G, Schrauder A et al (2007) Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 21:604–611

    Article  Google Scholar 

  15. van der Velden VH, Hochhaus A, Cazzaniga G et al (2003) Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 17(6):1013–1034

    Article  Google Scholar 

  16. Pott C, Brüggemann M, Ritgen M et al (2013) MRD detection in B-cell non-Hodgkin lymphomas using Ig gene rearrangements and chromosomal translocations as targets for real-time quantitative PCR. Methods Mol Biol 971:175–200

    Article  CAS  Google Scholar 

  17. Ladetto M, Brüggemann M, Monitillo L et al (2014) Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia 28:1299–1307

    Article  CAS  Google Scholar 

  18. Martinez-Lopez J, Lahuerta JJ, Pepin F et al (2014) Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood 123:3073–3079

    Article  CAS  Google Scholar 

  19. van Dongen JJ, van der Velden VH, Brüggemann M et al (2015) Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood 125(26):3996–4009

    Article  Google Scholar 

  20. Böttcher S, Ritgen M, Fischer K et al (2012) Minimal residual disease quantification is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: a multivariate analysis from the randomized GCLLSG CLL8 trial. J Clin Oncol 30:980–988

    Article  Google Scholar 

  21. Rawstron AC, Child JA, de Tute RM et al (2013) Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX Study. J Clin Oncol 31:2540–2547

    Article  Google Scholar 

  22. Paiva B, Gutiérrez NC, Rosiñol L et al (2012) High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. Blood 119:687–691

    Article  CAS  Google Scholar 

  23. Markey AL, Mohr S, Day PJ (2010) High-throughput droplet PCR. Methods 50:277–281

    Article  CAS  Google Scholar 

  24. Hindson BJ, Ness KD, Masquelier DA et al (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610

    Article  CAS  Google Scholar 

  25. Pinheiro LB, Coleman VA, Hindson CM et al (2012) Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 84:1003–1011

    Article  CAS  Google Scholar 

  26. Day E, Dear PH, McCaughan F (2013) Digital PCR strategies in the development and analysis of molecular biomarkers for personalized medicine. Methods 59(1):101–107

    Article  CAS  Google Scholar 

  27. Didelot A, Kotsopoulos SK, Lupo A et al (2013) Multiplex picoliter-droplet digital PCR for quantitative assessment of DNA integrity in clinical samples. Clin Chem 59:815–823

    Article  CAS  Google Scholar 

  28. Dingle TC, Sedlak RH, Cook L et al (2013) Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances. Clin Chem 59:1670–1672

    Article  CAS  Google Scholar 

  29. Hayden RT, Gu Z, Ingersoll J, Abdul-Ali D (2013) Comparison of droplet digital PCR to real-time PCR for quantitative detection of cytomegalovirus. J Clin Microbiol 51:540–546

    Article  CAS  Google Scholar 

  30. Hindson CM, Chevillet JR, Briggs HA et al (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10:1003–1005

    Article  CAS  Google Scholar 

  31. Huggett JF, Whale A (2013) Digital PCR as a novel technology and its potential implications for molecular diagnostics. Clin Chem 59:1691–1693

    Article  CAS  Google Scholar 

  32. Nixon G, Garson JA, Grant P et al (2014) Comparative study of sensitivity, linearity, and resistance to inhibition of digital and nondigital polymerase chain reaction and loop mediated isothermal amplification assays for quantification of human cytomegalovirus. Anal Chem 86:4387–4394

    Article  CAS  Google Scholar 

  33. Huggett JF, Cowen S, Foy CA (2015) Considerations for digital PCR as an accurate molecular diagnostic tool. Clin Chem 61(1):79–88

    Article  CAS  Google Scholar 

  34. Drandi D, Kubiczkova-Besse L, Ferrero S et al (2015) Minimal residual disease detection by droplet digital PCR in multiple myeloma, mantle cell lymphoma, and follicular lymphoma. A comparison with real-time PCR. J Mol Diagn 17(6):652–660

    Article  CAS  Google Scholar 

  35. Deane M, McCarthy KP, Wiedemann LM et al (1991) An improved method for detection of B-lymphoid clonality by polimerase chain reaction. Leukemia 5:726

    CAS  PubMed  Google Scholar 

  36. Voena C, Ladetto M, Astolfi M et al (1997) A novel nested-PCR strategy for the detection of rearranged immunoglobulin heavy-chain genes in B cell tumors. Leukemia 11:1793

    Article  CAS  Google Scholar 

  37. Summers KE, Goff LK, Wilson AG et al (2001) Frequency of the Bcl-2/IgH rearrangement in normal individuals: implications for the monitoring of disease in patients with follicular lymphoma. J Clin Oncol 19:420–424

    Article  CAS  Google Scholar 

  38. Albinger-Hegyi A, Hochreutener B, Abdou MT et al (2002) High frequency of t(14;18) translocation breakpoints outside of major breakpoint and minor cluster regions in follicular lymphomas improved polymerase chain reaction protocols for their detection. Am J Pathol 160:823–832

    Article  CAS  Google Scholar 

  39. Ladetto M, De Marco F, Benedetti F et al (2008) Prospective, multicenter randomized GITMO/IIL trial comparing intensive (R-HDS) versus conventional (CHOP-R) chemoimmunotherapy in high-risk follicular lymphoma at diagnosis: the superior disease control of R-HDS does not translate into an overall survival advantage. Blood 111(8):4004–4013

    Article  CAS  Google Scholar 

  40. Ladetto M, Sametti S, Donovan JW et al (2001) A validated real-time quantitative PCR approach shows a correlation between tumor burden and successful ex vivo purging in follicular lymphoma patients. Exp Hematol 29(2):183–193

    Article  CAS  Google Scholar 

  41. Della Starza I, Cavalli M, Del Giudice I et al (2014) Comparison of two real-time quantitative polymerase chain reaction strategies for minimal residual disease evaluation in lymphoproliferative disorders: correlation between immunoglobulin gene mutation load and real-time quantitative polymerase chain reaction performance. Hematol Oncol 32(3):133–138

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Elisa Genuardi, Barbara Mantoan, Martina Ferrante, Luigia Monitillo, Manuela Gambella, Daniela Barbero, Irene Della Starza, Elena Ciabatti, Nadia Dani, and Marta Varotto for their excellent technical support. Moreover, we are grateful to the Italian Lymphoma Foundation (FIL) that is supporting our ongoing research projects on MCL and FL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Drandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Drandi, D., Ferrero, S., Ladetto, M. (2018). Droplet Digital PCR for Minimal Residual Disease Detection in Mature Lymphoproliferative Disorders. In: Karlin-Neumann, G., Bizouarn, F. (eds) Digital PCR. Methods in Molecular Biology, vol 1768. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7778-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7778-9_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7776-5

  • Online ISBN: 978-1-4939-7778-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics