Skip to main content

CRISPR/dCas9 Switch Systems for Temporal Transcriptional Control

  • Protocol
  • First Online:
Epigenome Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1767))

Abstract

In a swift revolution, CRISPR/Cas9 has reshaped the means and ease of interrogating biological questions. Particularly, mutants that result in a nuclease-deactivated Cas9 (dCas9) provide scientists with tools to modulate transcription of genomic loci at will by targeting transcriptional effector domains. To interrogate the temporal order of events during transcriptional regulation, rapidly inducible CRISPR/dCas9 systems provide previously unmet molecular tools. In only a few years of time, numerous light and chemical-inducible switches have been applied to CRISPR/dCas9 to generate dCas9 switches. As these inducible switch systems are able to modulate dCas9 directly at the protein level, they rapidly affect dCas9 stability, activity, or target binding and subsequently rapidly influence downstream transcriptional events. Here we review the current state of such biotechnological CRISPR/dCas9 enhancements. Specifically we provide details on their flaws and strengths and on the differences in molecular design between the switch systems. With this we aim to provide a selection guide for researchers with keen interest in rapid temporal control over transcriptional modulation through the CRISPR/dCas9 system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183. https://doi.org/10.1016/j.cell.2013.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thakore PI, Black JB, Hilton IB, Gersbach CA (2016) Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 13(2):127–137. https://doi.org/10.1038/nmeth.3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kungulovski G, Jeltsch A (2016) Epigenome editing: state of the art, concepts, and perspectives. Trends Genet 32(2):101–113. https://doi.org/10.1016/j.tig.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  4. Jiang F, Zhou K, Ma L, Gressel S, Doudna JA (2015) STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348(6242):1477–1481. https://doi.org/10.1126/science.aab1452

    Article  CAS  PubMed  Google Scholar 

  5. Rose AS, Hildebrand PW (2015) NGL viewer: a web application for molecular visualization. Nucleic Acids Res 43(W1):W576–W579. https://doi.org/10.1093/nar/gkv402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343(6176):1247997. https://doi.org/10.1126/science.1247997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5):935–949. https://doi.org/10.1016/j.cell.2014.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales JA, Kornfeld JE, Doudna JA (2015) Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci U S A 112(10):2984–2989. https://doi.org/10.1073/pnas.1501698112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zetsche B, Volz SE, Zhang F (2015) A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33(2):139–142. https://doi.org/10.1038/nbt.3149

    Article  CAS  PubMed  Google Scholar 

  10. Banaszynski LA, Chen LC, Maynard-Smith LA, Ooi AG, Wandless TJ (2006) A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126(5):995–1004. https://doi.org/10.1016/j.cell.2006.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Inoue T, Heo WD, Grimley JS, Wandless TJ, Meyer T (2005) An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways. Nat Methods 2(6):415–418. https://doi.org/10.1038/nmeth763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nihongaki Y, Kawano F, Nakajima T, Sato M (2015) Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol 33(7):755–760. https://doi.org/10.1038/nbt.3245

    Article  CAS  PubMed  Google Scholar 

  13. Nguyen DP, Miyaoka Y, Gilbert LA, Mayerl SJ, Lee BH, Weissman JS, Conklin BR, Wells JA (2016) Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity. Nat Commun 7:12009. https://doi.org/10.1038/ncomms12009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nihongaki Y, Yamamoto S, Kawano F, Suzuki H, Sato M (2015) CRISPR-Cas9-based photoactivatable transcription system. Chem Biol 22(2):169–174. https://doi.org/10.1016/j.chembiol.2014.12.011

    Article  CAS  PubMed  Google Scholar 

  15. Polstein LR, Gersbach CA (2015) A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol 11(3):198–200. https://doi.org/10.1038/nchembio.1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gao Y, Xiong X, Wong S, Charles EJ, Lim WA, Qi LS (2016) Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat Methods 13(12):1043–1049. https://doi.org/10.1038/nmeth.4042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bao Z, Jain S, Jaroenpuntaruk V, Zhao H (2017) Orthogonal genetic regulation in human cells using chemically induced CRISPR/Cas9 activators. ACS Synth Biol 6(4):686–693. https://doi.org/10.1021/acssynbio.6b00313

    Article  CAS  PubMed  Google Scholar 

  18. Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K, Otonkoski T (2015) Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Rep 5(3):448–459. https://doi.org/10.1016/j.stemcr.2015.08.001

    Article  CAS  Google Scholar 

  19. Maji B, Moore CL, Zetsche B, Volz SE, Zhang F, Shoulders MD, Choudhary A (2017) Multidimensional chemical control of CRISPR-Cas9. Nat Chem Biol 13(1):9–11. https://doi.org/10.1038/nchembio.2224

    Article  CAS  PubMed  Google Scholar 

  20. Putyrski M, Schultz C (2012) Protein translocation as a tool: the current rapamycin story. FEBS Lett 586(15):2097–2105. https://doi.org/10.1016/j.febslet.2012.04.061

    Article  CAS  PubMed  Google Scholar 

  21. Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237(3):752–757. https://doi.org/10.1006/bbrc.1997.7124

    Article  CAS  PubMed  Google Scholar 

  22. Redeuilh G, Moncharmont B, Secco C, Baulieu EE (1987) Subunit composition of the molybdate-stabilized “8-9 S” nontransformed estradiol receptor purified from calf uterus. J Biol Chem 262(15):6969–6975

    CAS  PubMed  Google Scholar 

  23. Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, PRI E, Lin S, Kiani S, Guzman CD, Wiegand DJ, Ter-Ovanesyan D, Braff JL, Davidsohn N, Housden BE, Perrimon N, Weiss R, Aach J, Collins JJ, Church GM (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12(4):326–328. https://doi.org/10.1038/nmeth.3312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500(7463):472–476. https://doi.org/10.1038/nature12466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Polstein LR, Gersbach CA (2012) Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors. J Am Chem Soc 134(40):16480–16483. https://doi.org/10.1021/ja3065667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, Lin C (2008) Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322(5907):1535–1539. https://doi.org/10.1126/science.1163927

    Article  CAS  PubMed  Google Scholar 

  27. Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL (2010) Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 7(12):973–975. https://doi.org/10.1038/nmeth.1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yazawa M, Sadaghiani AM, Hsueh B, Dolmetsch RE (2009) Induction of protein-protein interactions in live cells using light. Nat Biotechnol 27(10):941–945. https://doi.org/10.1038/nbt.1569

    Article  CAS  PubMed  Google Scholar 

  29. Levskaya A, Weiner OD, Lim WA, Voigt CA (2009) Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461(7266):997–1001. https://doi.org/10.1038/nature08446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ni M, Tepperman JM, Quail PH (1999) Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400(6746):781–784. https://doi.org/10.1038/23500

    Article  CAS  PubMed  Google Scholar 

  31. Miyazono K, Miyakawa T, Sawano Y, Kubota K, Kang HJ, Asano A, Miyauchi Y, Takahashi M, Zhi Y, Fujita Y, Yoshida T, Kodaira KS, Yamaguchi-Shinozaki K, Tanokura M (2009) Structural basis of abscisic acid signalling. Nature 462(7273):609–614. https://doi.org/10.1038/nature08583

    Article  CAS  PubMed  Google Scholar 

  32. Liang FS, Ho WQ, Crabtree GR (2011) Engineering the ABA plant stress pathway for regulation of induced proximity. Sci Signal 4(164):rs2. https://doi.org/10.1126/scisignal.2001449

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M (2007) Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell 19(7):2140–2155. https://doi.org/10.1105/tpc.106.043729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miyamoto T, DeRose R, Suarez A, Ueno T, Chen M, Sun TP, Wolfgang MJ, Mukherjee C, Meyers DJ, Inoue T (2012) Rapid and orthogonal logic gating with a gibberellin-induced dimerization system. Nat Chem Biol 8(5):465–470. https://doi.org/10.1038/nchembio.922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR (2015) Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol 11(5):316–318. https://doi.org/10.1038/nchembio.1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Buskirk AR, Ong YC, Gartner ZJ, Liu DR (2004) Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc Natl Acad Sci U S A 101(29):10505–10510. https://doi.org/10.1073/pnas.0402762101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peck SH, Chen I, Liu DR (2011) Directed evolution of a small-molecule-triggered intein with improved splicing properties in mammalian cells. Chem Biol 18(5):619–630. https://doi.org/10.1016/j.chembiol.2011.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lucas X, Ciulli A (2017) Recognition of substrate degrons by E3 ubiquitin ligases and modulation by small-molecule mimicry strategies. Curr Opin Struct Biol 44:101–110. https://doi.org/10.1016/j.sbi.2016.12.015

    Article  CAS  PubMed  Google Scholar 

  39. Iwamoto M, Bjorklund T, Lundberg C, Kirik D, Wandless TJ (2010) A general chemical method to regulate protein stability in the mammalian central nervous system. Chem Biol 17(9):981–988. https://doi.org/10.1016/j.chembiol.2010.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–588. https://doi.org/10.1038/nature14136

    Article  CAS  PubMed  Google Scholar 

  41. Miyazaki Y, Imoto H, Chen LC, Wandless TJ (2012) Destabilizing domains derived from the human estrogen receptor. J Am Chem Soc 134(9):3942–3945. https://doi.org/10.1021/ja209933r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rauch BJ, Silvis MR, Hultquist JF, Waters CS, McGregor MJ, Krogan NJ, Bondy-Denomy J (2017) Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell 168(1–2):150–158.e110. https://doi.org/10.1016/j.cell.2016.12.009

    Article  CAS  PubMed  Google Scholar 

  43. Dong, Guo M, Wang S, Zhu Y, Wang S, Xiong Z, Yang J, Xu Z, Huang Z (2017) Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein. Nature. https://doi.org/10.1038/nature22377

Download references

Acknowledgments

This work is supported by the Max Planck Research Group Leader program and by the German Ministry of Science and Education (BMBF) through the grant E:bio Module III—Xnet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rutger A. F. Gjaltema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gjaltema, R.A.F., Schulz, E.G. (2018). CRISPR/dCas9 Switch Systems for Temporal Transcriptional Control. In: Jeltsch, A., Rots, M. (eds) Epigenome Editing. Methods in Molecular Biology, vol 1767. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7774-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7774-1_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7773-4

  • Online ISBN: 978-1-4939-7774-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics