Skip to main content

Neuroepigenetic Editing

  • Protocol
  • First Online:
Book cover Epigenome Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1767))

Abstract

Studies of the mammalian nervous system have revealed widespread epigenetic regulation underlying gene expression intrinsic to basic neurobiological function as well as neurological disease. Over the past decade, a critical role has emerged for the neural regulation of chromatin-modifying enzymes during both development and adulthood, and in response to external stimuli. These biochemical data are complemented by numerous next generation sequencing (NGS) studies that quantify the extent of chromatin and DNA modifications in neurons. Neuroepigenetic editing tools can be applied to distinguish between the mere presence and functional relevance of such modifications to neural transcription and animal behavior. This review discusses current advances in neuroepigenetic editing, highlighting methodological considerations pertinent to neuroscience, such as delivery methods and the spatiotemporal specificity of editing. Although neuroepigenetic editing is a nascent field, the studies presented in this review demonstrate the enormous potential of this approach for basic neurobiological research and therapeutic application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  2. Cholewa-waclaw J, Bird XA, von Schimmelmann M et al (2016) The role of epigenetic mechanisms in the regulation of gene expression in the nervous system. J Neurosci 36:11427–11434. https://doi.org/10.1523/JNEUROSCI.2492-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sweatt JD (2013) The emerging field of neuroepigenetics. Neuron 80:624–632. https://doi.org/10.1016/j.neuron.2013.10.023

    Article  CAS  PubMed  Google Scholar 

  4. Hope BT, Skinner MK, Kenny PJ, Akbarian S (2013) Exploring the epigenetics of cocaine resistance. Nat Med 19:136–137

    Article  PubMed  Google Scholar 

  5. Bali P, Im HI, Kenny PJ (2011) Methylation, memory and addiction. Epigenetics 6:671–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Robison AJ, Nestler EJ (2011) Transcriptional and epigenetic mechanisms of addiction. Nat Publ Gr 12:623–637

    CAS  Google Scholar 

  7. Meaney MJ (2013) Epigenetics and the environmental regulation of the genome and its function. In: Evolution, early experience and Human Development: From research to practice and policy. oxford University Press. https://doi:10.1093/acprof:oso/9780199755059.003.0006

    Chapter  Google Scholar 

  8. Kaas GA, Zhong C, Eason DE et al (2013) TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron 79:1086–1093

    Article  CAS  PubMed  Google Scholar 

  9. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rudenko A, Dawlaty MM, Seo J et al (2013) Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron 79:1109–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parikshak NN, Swarup V, Belgard TG et al (2016) Genome-wide changes in lncRNA, alternative splicing, and cortical patterning in autism. Nature 540:423–427. https://doi.org/10.1101/077057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Konopka G, Bomar JM, Winden K et al (2009) Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature 462:213–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hawk JD, Bookout AL, Poplawski SG et al (2012) NR4A nuclear receptors support memory enhancement by histone deacetylase inhibitors. J Clin Invest 122:3593–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gräff J, Tsai L-H (2013) Histone acetylation: molecular mnemonics on the chromatin. Nat Publ Gr 14:97–111

    Google Scholar 

  15. Su Y, Shin J, Zhong C et al (2017) Neuronal activity modifies the chromatin accessibility landscape in the adult brain. Nat Neurosci 20:476–483. https://doi.org/10.1038/nn.4494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bagot RC, Cates HM, Purushothaman I et al (2016) Circuit-wide transcriptional profiling reveals brain region-specific gene networks regulating depression susceptibility. Neuron 90:969–983. https://doi.org/10.1016/j.neuron.2016.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Malvaez M, McQuown SC, Rogge GA et al (2013) HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc Natl Acad Sci U S A 110:2647–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mitchell AC, Javidfar B, Pothula V et al (2017) MEF2C transcription factor is associated with the genetic and epigenetic risk architecture of schizophrenia and improves cognition in mice. Mol Psychiatry. https://doi.org/10.1038/mp.2016.254

  19. Mellé M, Ayata P, Dewell S et al (2012) MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151:1417–1430. https://doi.org/10.1016/j.cell.2012.11.022

    Article  CAS  Google Scholar 

  20. Feng J, Shao N, Szulwach KE et al (2015) Role of Tet1 and 5-hydroxymethylcytosine in cocaine action. Nat Neurosci 18:536–544. https://doi.org/10.1038/nn.3976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Watson CT, Szutorisz H, Garg P et al (2015) Genome-wide DNA methylation profiling reveals epigenetic changes in the rat nucleus accumbens. Neuropsychopharmacology 40:1–13. https://doi.org/10.1038/npp.2015.155

    Article  CAS  Google Scholar 

  22. De Groote ML, Verschure PJ, Rots MG (2012) Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res 40:10596–10613. https://doi.org/10.1093/nar/gks863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jamieson AC, Miller JC, Pabo CO (2003) Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov 2:361–368

    Article  CAS  PubMed  Google Scholar 

  24. Thakore PI, Black JB, Hilton IB, Gersbach CA (2016) Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 13:127–137. https://doi.org/10.1038/nmeth.3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mendenhall EM, Williamson KE, Reyon D et al (2013) Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 12:1133–1136

    Article  Google Scholar 

  26. Kearns NA, Pham H, Tabak B et al (2015) Functional annotation of native enhancers with a Cas9–histone demethylase fusion. Nat Methods 12:401–403. https://doi.org/10.1038/nmeth.3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hall FS, Drgonova J, Jain S, Uhl GR (2013) Implications of genome wide association studies for addiction: are our a priori assumptions all wrong? Pharmacol Ther 140:267–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Soldner F, Stelzer Y, Shivalila CS et al (2016) Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Nature 533:95–99. https://doi.org/10.1038/nature17939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gelernter J, Kranzler HR, Sherva R et al (2014) Genome-wide association study of opioid dependence: multiple associations mapped to calcium and potassium pathways. Biol Psychiatry 76:66–74

    Article  CAS  PubMed  Google Scholar 

  30. Kim T-K, Hemberg M, Gray JM et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187. https://doi.org/10.1038/nature09033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Frank CL, Liu F, Wijayatunge R et al (2015) Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nat Neurosci 18:647–656. https://doi.org/10.1038/nn.3995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carone BR, Rando OJ (2012) Rewriting the epigenome. Cell 149:1422–1423

    Article  CAS  PubMed  Google Scholar 

  33. Keung BAJ, Khalil AS (2016) A unifying model of epigenetic regulation. Science 351:661–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heller EA, Cates HM, Pena CJ et al (2014) Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat Neurosci 17:1720–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heller EA, Hamilton PJ, Burek DD et al (2016) Targeted epigenetic remodeling of the Cdk5 gene in nucleus accumbens regulates cocaine- and stress-evoked behavior. J Neurosci 36:4690–4697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Konermann S, Brigham MD, Trevino A et al (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Snowden AW, Gregory PD, Case CC, Pabo CO (2002) Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol 12:2159–2166

    Article  CAS  PubMed  Google Scholar 

  38. Richter A, Boch J (2013) Designer TALEs team up for highly efficient gene induction. Nat Methods 10:207–208

    Article  CAS  PubMed  Google Scholar 

  39. Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  40. Sanjana NE, Cong L, Zhou Y et al (2012) A transcription activator-like effector toolbox for genome engineering. Nat Protoc 7:171–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gupta A, Christensen RG, Bell HA et al (2014) An improved predictive recognition model for Cys2-His2 zinc finger proteins. Nucleic Acids Res 42:4800–4812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maeder ML, Thibodeau-Beganny S, Sander JD et al (2009) Oligomerized pool engineering (OPEN): an “open-source” protocol for making customized zinc-finger arrays. Nat Protoc 4:1471–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zalatan JG, Lee ME, Almeida R et al (2014) Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160:339–350. https://doi.org/10.1016/j.cell.2014.11.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gilbert LA, Larson MH, Morsut L et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451. https://doi.org/10.1016/j.cell.2013.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA – guided. Science 337:816–822. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kolli N, Lu M, Maiti P et al (2017) CRISPR-Cas9 mediated gene-silencing of the mutant huntingtin gene in an in vitro model of Huntington’s disease. Int J Mol Sci 18:754. https://doi.org/10.3390/ijms18040754

    Article  PubMed Central  Google Scholar 

  48. Swiech L, Heidenreich M, Banerjee A et al (2014) In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33:99–103. https://doi.org/10.1038/nbt.3055

    Article  CAS  Google Scholar 

  49. Hamilton P, Lardner C, Lorsch Z, et al (2017) Engineering CRISPR/Cas9 constructs to model the epigenetic and transcriptional phenomena underlying pathogenic mechanisms of cocaine abuse. 2017 Neurosci. Meet. Planner, Washington, DC. Soc. Neurosci. 2017 (online)

    Google Scholar 

  50. Heller EA (2017) Chromatin-directed alternative splicing in brain reward regions. In: Third Korean-American Kavli Front. Sci. Symp. irvine, Calif. Irvine, CA, p 59

    Google Scholar 

  51. Liu XS, Wu H, Ji X et al (2016) Editing DNA methylation in the mammalian genome. Cell 167:233–247. https://doi.org/10.1016/j.cell.2016.08.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tan S, Guschin D, Davalos A et al (2003) Zinc-finger protein-targeted gene regulation: genomewide single-gene specificity. Proc Natl Acad Sci U S A 100:11997–12002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hilton IB, Ippolito AMD, Vockley CM et al (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517. https://doi.org/10.1038/nbt.3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gao X, Tsang JCH, Gaba F et al (2014) Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers. Nucleic Acids Res 42:e155. https://doi.org/10.1093/nar/gku836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Polstein LR, Gersbach CA (2015) Optogenetic systems enable precise spatial and temporal control of cell behavior. Nat Chem Biol 2(11):198–200. https://doi.org/10.1038/nchembio.1753

    Article  CAS  Google Scholar 

  56. Thakore PI, Ippolito AMD, Song L et al (2015) Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 2:1–9. https://doi.org/10.1038/nmeth.3630

    Article  CAS  Google Scholar 

  57. Grimmer MR, Stolzenburg S, Ford E et al (2014) Analysis of an artificial zinc finger epigenetic modulator: widespread binding but limited regulation. Nucleic Acids Res 42:10856–10868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu X, Kriz AJ, Sharp PA (2014) Target specificity of the CRISPR-Cas9 system. Quant Biol 2:59–70. https://doi.org/10.1007/s40484-014-0030-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Polstein LR, Gersbach CA (2012) Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors. J Am Chem Soc 134:16480–16483. https://doi.org/10.1021/ja3065667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Perez-Pinera P, Kocak DD, Vockley CM et al (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10:973–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pattanayak V, Ramirez C, Joung J, Liu DR (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 8:765–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Incontro S, Asensio CS, Edwards RH, Nicoll RA (2014) Efficient, complete deletion of synaptic proteins using CRISPR. Neuron 83:1051–1057. https://doi.org/10.1016/j.neuron.2014.07.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Laganiere J, Kells A, Lai J et al (2010) An engineered zinc finger protein activator of the endogenous glial cell line-derived neurotrophic factor gene provides functional neuroprotection in a rat model of Parkinson’s disease. J Neurosci 30:16469–16474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Platt RJ, Chen S, Zhou Y et al (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–455. https://doi.org/10.1016/j.cell.2014.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hamilton PJ, Burek DJ, Lombroso SI et al (2017) Cell-type-specific epigenetic editing at the Fosb gene controls susceptibility to social defeat stress. Neuropsychopharmacology. https://doi.org/10.1038/npp.2017.88

  66. Staahl BT, Benekareddy M, Coulon-Bainier C et al (2017) Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat Biotechnol 35:431–434. https://doi.org/10.1038/nbt.3806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bailus BJ, Pyles B, McAlister MM et al (2016) Protein delivery of an artificial transcription factor restores widespread Ube3a expression in an Angelman syndrome mouse brain. Mol Ther 24:548–555. https://doi.org/10.1038/mt.2015.236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kwon I, Schaffer DV (2008) Designer gene delivery vectors: molecular engineering and evolution of adeno-associated viral vectors for enhanced gene transfer. Pharm Res 25:489–499. https://doi.org/10.1007/s11095-007-9431-0

    Article  CAS  PubMed  Google Scholar 

  69. Edry E, Lamprecht R, Wagner S, Rosenblum K (2011) Virally mediated gene manipulation in the adult CNS. Front Mol Neurosci 4:57. https://doi.org/10.3389/fnmol.2011.00057

    Article  PubMed  PubMed Central  Google Scholar 

  70. Carlezon WA, Nestler EJ, Neve RL (2000) Herpes simplex virus-mediated gene transfer as a tool for neuropsychiatric research. Crit Rev Neurobiol 14:47–67

    Article  CAS  PubMed  Google Scholar 

  71. Galimi F, Verma IM (2002) Opportunities for the use of lentiviral vectors in human gene therapy. Curr Top Microbiol Immunol 261:245–254

    CAS  PubMed  Google Scholar 

  72. Garriga-Canut M, Agustín-Pavón C, Herrmann F et al (2012) Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc Natl Acad Sci U S A 109(45):E3136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Platt RJ, Zhou Y, Slaymaker IM et al (2017) Chd8 mutation leads to autistic-like behaviors and impaired striatal circuits. Cell Rep 19:335–350. https://doi.org/10.1016/j.celrep.2017.03.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang P, Mokhtari R, Pedrosa E et al (2017) CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol Autism. https://doi.org/10.1186/s13229-017-0124-1

  75. Ran FA, Cong L, Yan WX et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191. https://doi.org/10.1038/nature14299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Neve RL, Neve KA, Nestler EJ, Carlezon WA (2005) Use of herpes virus amplicon vectors to study brain disorders. Biotechniques 39:381–391

    Article  CAS  PubMed  Google Scholar 

  77. Zetsche B, Volz SE, Zhang F (2015) A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33:139–142. https://doi.org/10.1038/nbt.3149

    Article  CAS  PubMed  Google Scholar 

  78. Rivenbark AG, Stolzenburg S, Beltran AS et al (2012) Epigenetic reprogramming of cancer cells via targeted DNA methylation. Epigenetics 7:350–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nihongaki Y, Suzuki H, Sato Correspondence M et al (2015) CRISPR-Cas9-based photoactivatable transcription system. Chem Biol 22:169–174. https://doi.org/10.1016/j.chembiol.2014.12.011

    Article  CAS  PubMed  Google Scholar 

  80. Fierz B, Muir TW (2012) Chromatin as an expansive canvas for chemical biology. Nat Chem Biol 8:417–427. https://doi.org/10.1038/nchembio.938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jakovcevski M, Akbarian S (2012) Epigenetic mechanisms in neurological disease. Nat Med 18:1194–1204. https://doi.org/10.1038/nm.2828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chapdelaine P, Coulombe Z, Chikh A et al (2013) A potential new therapeutic approach for Friedreich ataxia: induction of frataxin expression with TALE proteins. Mol Ther Nucleic Acids 2:e119. https://doi.org/10.1038/mtna.2013.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang L, Spratt SK, Liu Q et al (2000) Synthetic zinc finger transcription factor action at an endogenous chromosomal site. Activation of the human erythropoietin gene. J Biol Chem 275:33850–33860

    Article  CAS  PubMed  Google Scholar 

  84. Nestler EJ (2008) Review. Transcriptional mechanisms of addiction: role of DeltaFosB. Philos Trans R Soc Lond B Biol Sci 363:3245–3255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lobo MK, Zaman S, Damez-Werno DM et al (2013) ΔFosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli. J Neurosci 33:18381–18395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bibb JA, Chen J, Taylor JR et al (2001) Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 410:376–380. https://doi.org/10.1038/35066591

    Article  CAS  PubMed  Google Scholar 

  87. Taylor JR, Lynch WJ, Sanchez H et al (2007) Inhibition of Cdk5 in the nucleus accumbens enhances the locomotor-activating and incentive-motivational effects of cocaine. Proc Natl Acad Sci U S A 104:4147–4152. https://doi.org/10.1073/pnas.0610288104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Meyer DA, Richer E, Benkovic SA et al (2008) Striatal dysregulation of Cdk5 alters locomotor responses to cocaine, motor learning, and dendritic morphology. Proc Natl Acad Sci U S A 105:18561–18566. https://doi.org/10.1073/pnas.0806078105

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ren J, Zhang X, Liu X et al (2017) A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget 8:17002–17011. https://doi.org/10.18632/oncotarget.15218

    Article  PubMed  PubMed Central  Google Scholar 

  90. Snowden AW, Zhang L, Urnov F et al (2003) Repression of vascular endothelial growth factor A in glioblastoma cells using engineered zinc finger transcription factors. Cancer Res 63:8968–8976

    CAS  PubMed  Google Scholar 

  91. Greer PL, Greenberg ME (2008) From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron 59:846–860

    Article  CAS  PubMed  Google Scholar 

  92. Sweatt JD (2009) Experience-dependent epigenetic modifications in the central nervous system. Biol Psychiatry 65:191–197

    Article  PubMed  Google Scholar 

  93. Rudenko A, Tsai L-H (2014) Epigenetic modifications in the nervous system and their impact upon cognitive impairments. Neuropharmacology 80:70–82. https://doi.org/10.1016/j.neuropharm.2014.01.043

    Article  CAS  PubMed  Google Scholar 

  94. Maze I, Shen L, Zhang B et al (2014) Analytical tools and current challenges in the modern era of neuroepigenomics. Nat Neurosci 17:1476–1490. https://doi.org/10.1038/nn.3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Smith AE, Hurd PJ, Bannister AJ et al (2008) Heritable gene repression through the action of a directed DNA methyltransferase at a chromosomal locus. J Biol Chem 283:9878–9885

    Article  CAS  PubMed  Google Scholar 

  96. Kungulovski G, Nunna S, Thomas M et al (2012) Lysine methyltransferase G9a is not required for DNMT3A/3B anchoring to methylated nucleosomes and maintenance of DNA methylation in somatic cells. Epigenetics Chromatin. https://doi.org/10.1186/s13072-015-0002-z

  97. Stolzenburg S, Beltran A, Swift-Scanlan T et al (2015) Stable oncogenic silencing in vivo by programmable and targeted de novo DNA methylation in breast cancer. Oncogene. https://doi.org/10.1038/onc.2014.470

  98. Joo J-Y, Schaukowitch K, Farbiak L et al (2015) Stimulus-specific combinatorial functionality of neuronal c-fos enhancers. Nat Neurosci 19:75–83. https://doi.org/10.1038/nn.4170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Walker DM, Cates HM, Heller EA, Nestler EJ (2015) Regulation of chromatin states by drugs of abuse. Curr Opin Neurobiol 30C:112–121

    Article  Google Scholar 

  100. Cong L, Zhou R, Kuo Y et al (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3:966–968

    Article  Google Scholar 

  101. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963. https://doi.org/10.1038/nmeth.2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Keung AJ, Bashor CJ, Kiriakov S et al (2014) Using targeted chromatin regulators to engineer combinatorial and spatial transcriptional regulation. Cell 158:110–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chavez A, Scheiman J, Vora S et al (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12:2–6. https://doi.org/10.1038/nmeth.3312

    Article  CAS  Google Scholar 

  104. Tanenbaum ME, Gilbert LA, Qi LS et al (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646. https://doi.org/10.1016/j.cell.2014.09.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sun H, Damez-werno DM, Scobie KN et al (2015) ACF chromatin-remodeling complex mediates stress-induced depressive-like behavior. Nat Med 21:1146–1153. https://doi.org/10.1038/nm.3939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Heller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hamilton, P.J., Lim, C.J., Nestler, E.J., Heller, E.A. (2018). Neuroepigenetic Editing. In: Jeltsch, A., Rots, M. (eds) Epigenome Editing. Methods in Molecular Biology, vol 1767. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7774-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7774-1_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7773-4

  • Online ISBN: 978-1-4939-7774-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics