Skip to main content

Generation of TALE-Based Designer Epigenome Modifiers

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1767))

Abstract

Manipulation of gene expression can be facilitated by editing the genome or the epigenome. Precise genome editing is traditionally achieved by using designer nucleases which are generally exploited to eliminate a specific gene product. Upon the introduction of a site-specific DNA double-strand break (DSB) by the nuclease, endogenous DSB repair mechanisms are in turn harnessed to induce DNA sequence changes that can result in target gene inactivation. Minimal off-target effects can be obtained by endowing designer nucleases with the highly specific DNA-binding domain (DBD) derived from transcription activator-like effectors (TALEs). In contrast, epigenome editing allows gene expression control without inducing changes in the DNA sequence by specifically altering epigenetic marks, as histone tails modifications or DNA methylation patterns within promoter or enhancer regions. Importantly, this approach allows both up- and downregulation of the target gene expression, and the effect is generally reversible. TALE-based designer epigenome modifiers combine the high specificity of TALE-derived DBDs with the power of epigenetic modifier domains to induce fast and long-lasting changes in the epigenetic landscape of a target gene and control its expression. Here we provide a detailed description for the generation of TALE-based designer epigenome modifiers and of a suitable reporter cell line to easily monitor their activity.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  CAS  PubMed  Google Scholar 

  2. Keung AJ, Joung JK, Khalil AS, Collins JJ (2015) Chromatin regulation at the frontier of synthetic biology. Nat Rev Genet 16(3):159–171. https://doi.org/10.1038/nrg3900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Patil SD, Rhodes DG, Burgess DJ (2005) DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J 7(1):E61–E77. https://doi.org/10.1208/aapsj070109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hannon GJ, Rossi JJ (2004) Unlocking the potential of the human genome with RNA interference. Nature 431(7006):371–378. https://doi.org/10.1038/nature02870

    Article  CAS  PubMed  Google Scholar 

  5. Uil TG, Haisma HJ, Rots MG (2003) Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities. Nucleic Acids Res 31(21):6064–6078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405. https://doi.org/10.1016/j.tibtech.2013.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mussolino C, Alzubi J, Fine EJ, Morbitzer R, Cradick TJ, Lahaye T, Bao G, Cathomen T (2014) TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res 42(10):6762–6773. https://doi.org/10.1093/nar/gku305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mussolino C, Cathomen T (2012) TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol 23(5):644–650. https://doi.org/10.1016/j.copbio.2012.01.013

    Article  CAS  PubMed  Google Scholar 

  9. Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436. https://doi.org/10.1146/annurev-phyto-080508-081936

    Article  CAS  PubMed  Google Scholar 

  10. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501. https://doi.org/10.1126/science.1178817

    Article  CAS  PubMed  Google Scholar 

  11. Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I (1998) FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A 95(18):10570–10575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alwin S, Gere MB, Guhl E, Effertz K, Barbas CF 3rd, Segal DJ, Weitzman MD, Cathomen T (2005) Custom zinc-finger nucleases for use in human cells. Mol Ther 12(4):610–617. https://doi.org/10.1016/j.ymthe.2005.06.094

    Article  CAS  PubMed  Google Scholar 

  13. Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25(7):778–785. https://doi.org/10.1038/nbt1319

    Article  CAS  PubMed  Google Scholar 

  14. Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25(7):786–793. https://doi.org/10.1038/nbt1317

    Article  CAS  PubMed  Google Scholar 

  15. Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T, Cathomen T (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39(21):9283–9293. https://doi.org/10.1093/nar/gkr597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jasin M, Rothstein R (2013) Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5(11):a012740. https://doi.org/10.1101/cshperspect.a012740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257. https://doi.org/10.1146/annurev.biochem.77.061306.125255

    Article  CAS  PubMed  Google Scholar 

  18. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211. https://doi.org/10.1146/annurev.biochem.052308.093131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Porteus MH (2015) Towards a new era in medicine: therapeutic genome editing. Genome Biol 16:286. https://doi.org/10.1186/s13059-015-0859-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hendel A, Fine EJ, Bao G, Porteus MH (2015) Quantifying on- and off-target genome editing. Trends Biotechnol 33(2):132–140. https://doi.org/10.1016/j.tibtech.2014.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Polstein LR, Perez-Pinera P, Kocak DD, Vockley CM, Bledsoe P, Song L, Safi A, Crawford GE, Reddy TE, Gersbach CA (2015) Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators. Genome Res 25(8):1158–1169. https://doi.org/10.1101/gr.179044.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kungulovski G, Jeltsch A (2016) Epigenome editing: state of the art, concepts, and perspectives. Trends Genet 32(2):101–113. https://doi.org/10.1016/j.tig.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  23. Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17(8):487–500. https://doi.org/10.1038/nrg.2016.59

    Article  CAS  PubMed  Google Scholar 

  24. Groner AC, Meylan S, Ciuffi A, Zangger N, Ambrosini G, Denervaud N, Bucher P, Trono D (2010) KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet 6(3):e1000869. https://doi.org/10.1371/journal.pgen.1000869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492. https://doi.org/10.1038/nrg3230

    Article  CAS  PubMed  Google Scholar 

  26. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25(10):1010–1022. https://doi.org/10.1101/gad.2037511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gowher H, Liebert K, Hermann A, Xu G, Jeltsch A (2005) Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J Biol Chem 280(14):13341–13348. https://doi.org/10.1074/jbc.M413412200

    Article  CAS  PubMed  Google Scholar 

  28. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826. https://doi.org/10.1038/nbt.2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kiani S, Chavez A, Tuttle M, Hall RN, Chari R, Ter-Ovanesyan D, Qian J, Pruitt BW, Beal J, Vora S, Buchthal J, Kowal EJ, Ebrahimkhani MR, Collins JJ, Weiss R, Church G (2015) Cas9 gRNA engineering for genome editing, activation and repression. Nat Methods 12(11):1051–1054. https://doi.org/10.1038/nmeth.3580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Margolin JF, Friedman JR, Meyer WK, Vissing H, Thiesen HJ, Rauscher FJ 3rd (1994) Kruppel-associated boxes are potent transcriptional repression domains. Proc Natl Acad Sci U S A 91(10):4509–4513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Siddique AN, Nunna S, Rajavelu A, Zhang Y, Jurkowska RZ, Reinhardt R, Rots MG, Ragozin S, Jurkowski TP, Jeltsch A (2013) Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity. J Mol Biol 425(3):479–491. https://doi.org/10.1016/j.jmb.2012.11.038

    Article  CAS  PubMed  Google Scholar 

  32. Mlambo T, Nitsch S, Romito M, Bossen C, Cornu TI, Cathomen T, Mussolino C (2017) Silencing of HIV co-receptors by designer epigenome modifiers (in preparation)

    Google Scholar 

  33. Morbitzer R, Elsaesser J, Hausner J, Lahaye T (2011) Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res 39(13):5790–5799. https://doi.org/10.1093/nar/gkr151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brown BD, Venneri MA, Zingale A, Sergi Sergi L, Naldini L (2006) Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med 12(5):585–591. https://doi.org/10.1038/nm1398

    Article  CAS  PubMed  Google Scholar 

  35. Kotlarz D, Zietara N, Uzel G, Weidemann T, Braun CJ, Diestelhorst J, Krawitz PM, Robinson PN, Hecht J, Puchalka J, Gertz EM, Schaffer AA, Lawrence MG, Kardava L, Pfeifer D, Baumann U, Pfister ED, Hanson EP, Schambach A, Jacobs R, Kreipe H, Moir S, Milner JD, Schwille P, Mundlos S, Klein C (2013) Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome. J Exp Med 210(3):433–443. https://doi.org/10.1084/jem.20111229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reither S, Li F, Gowher H, Jeltsch A (2003) Catalytic mechanism of DNA-(cytosine-C5)-methyltransferases revisited: covalent intermediate formation is not essential for methyl group transfer by the murine Dnmt3a enzyme. J Mol Biol 329(4):675–684

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the members of our laboratory for helpful discussion. This work was supported by the Federal Ministry of Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Mussolino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nitsch, S., Mussolino, C. (2018). Generation of TALE-Based Designer Epigenome Modifiers. In: Jeltsch, A., Rots, M. (eds) Epigenome Editing. Methods in Molecular Biology, vol 1767. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7774-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7774-1_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7773-4

  • Online ISBN: 978-1-4939-7774-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics