Skip to main content

Approaches for the Analysis and Interpretation of Whole Genome Bisulfite Sequencing Data

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1767))

Abstract

DNA methylation is a covalent modification of DNA that plays important roles in processes such as the regulation of gene expression, transcription factor binding, and suppression of transposable elements. The use of whole genome bisulfite sequencing (WGBS) enables the genome-wide identification and quantification of DNA methylation patterns at single-base resolution and is the gold standard for analysis of DNA methylation. Computational analysis of WGBS data can be particularly challenging, as many computationally intensive steps are required. Here, we outline a step-by-step approach for the analysis and interpretation of WGBS data. First, sequencing reads must be trimmed, quality checked, and aligned to the genome. Second, DNA methylation levels are estimated at each cytosine position using the aligned sequence reads of the bisulfite treated DNA. Third, regions of differential cytosine methylation between samples can be identified. Finally, these data need to be visualized and interpreted in the context of the biological question at hand.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14:204–220. https://doi.org/10.1038/nrg3354

    Article  CAS  PubMed  Google Scholar 

  2. Friso S, Choi S-W, Dolnikowski GG, Selhub J (2002) A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry. Anal Chem 74:4526–4531

    Article  CAS  PubMed  Google Scholar 

  3. Weber M, Davies JJ, Wittig D et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862. https://doi.org/10.1038/ng1598

    Article  CAS  PubMed  Google Scholar 

  4. Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394–408. https://doi.org/10.1038/nrg3683

    Article  CAS  PubMed  Google Scholar 

  5. Frommer M, McDonald LE, Millar DS et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831. https://doi.org/10.1073/pnas.89.5.1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lister R, O’Malley RC, Tonti-Filippini J et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536. https://doi.org/10.1016/j.cell.2008.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cokus SJ, Feng S, Zhang X et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219. https://doi.org/10.1038/nature06745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Andrews S FastQC A Quality control tool for high throughput sequence data. In: bioinformatics.babraham.ac.uk. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 18 Apr 2017

  9. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17:10–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  10. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo W, Fiziev P, Yan W et al (2013) BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics 14:774. https://doi.org/10.1186/1471-2164-14-774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Feng H, Conneely KN, Wu H (2014) A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res 42:e69. https://doi.org/10.1093/nar/gku154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ramirez F, Dundar F, Diehl S et al (2014) deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res 42:W187–W191. https://doi.org/10.1093/nar/gku365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048. https://doi.org/10.1093/bioinformatics/btw354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu H, Xu T, Feng H et al (2015) Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic Acids Res 43(21):e141. https://doi.org/10.1093/nar/gkv715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lawrence M, Huber W, Pagès H et al (2013) Software for computing and annotating genomic ranges. PLoS Comput Biol 9:e1003118. https://doi.org/10.1371/journal.pcbi.1003118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kawakatsu T, Stuart T, Valdes M et al (2016) Unique cell-type-specific patterns of DNA methylation in the root meristem. Nat Plants 2(5):16058. https://doi.org/10.1038/nplants.2016.58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stroud H, Greenberg MVC, Feng S et al (2013) Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152:352–364. https://doi.org/10.1016/j.cell.2012.10.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Lister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stuart, T., Buckberry, S., Lister, R. (2018). Approaches for the Analysis and Interpretation of Whole Genome Bisulfite Sequencing Data. In: Jeltsch, A., Rots, M. (eds) Epigenome Editing. Methods in Molecular Biology, vol 1767. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7774-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7774-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7773-4

  • Online ISBN: 978-1-4939-7774-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics