Skip to main content

Generation of Whole Genome Bisulfite Sequencing Libraries for Comprehensive DNA Methylome Analysis

  • Protocol
  • First Online:
Epigenome Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1767))

Abstract

Whole genome bisulfite sequencing (WGBS) enables the detection of DNA methylation at single base-pair resolution. The treatment of DNA with sodium bisulfite allows the discrimination of methylated and unmethylated cytosines, but the power of this technology can be limited by the input amounts of DNA and the length of DNA fragments due to DNA damage caused by the desulfonation process. Here, we describe a WGBS library preparation protocol that minimizes the loss and damage of DNA, generating high quality libraries amplified with fewer PCR cycles, and hence data with fewer PCR duplicates, from lower amounts of input material. Briefly, genomic DNA is sheared, end-repaired, 3′-adenylated, and ligated to adaptors with fewer cleanup steps in between, minimizing DNA loss. The adapter-ligated DNA is then treated with sodium bisulfite and amplified with few PCR cycles to reach the yield needed for sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9(6):465–476

    Article  CAS  Google Scholar 

  2. Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14(3):204–220

    Article  CAS  Google Scholar 

  3. Urich MA et al (2015) MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat Protoc 10(3):475–483

    Article  CAS  Google Scholar 

  4. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597–610

    Article  CAS  Google Scholar 

  5. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492

    Article  CAS  Google Scholar 

  6. Lister R et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322

    Article  CAS  Google Scholar 

  7. Frommer M et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–1831

    Article  CAS  Google Scholar 

  8. Yong WS, Hsu FM, Chen PY (2016) Profiling genome-wide DNA methylation. Epigenetics Chromatin 9:26

    Article  Google Scholar 

  9. Gu H et al (2011) Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc 6(4):468–481

    Article  CAS  Google Scholar 

  10. Miura F et al (2012) Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res 40(17):e136

    Article  CAS  Google Scholar 

  11. Lister R et al (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341(6146):1237905

    Article  Google Scholar 

  12. He YF et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333(6047):1303–1307

    Article  CAS  Google Scholar 

  13. Ito S et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047):1300–1303

    Article  CAS  Google Scholar 

  14. Booth MJ et al (2013) Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protoc 8(10):1841–1851

    Article  CAS  Google Scholar 

  15. Yu M et al (2012) Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat Protoc 7(12):2159–2170

    Article  CAS  Google Scholar 

  16. Plongthongkum N, Diep DH, Zhang K (2014) Advances in the profiling of DNA modifications: cytosine methylation and beyond. Nat Rev Genet 15(10):647–661

    Article  CAS  Google Scholar 

  17. Wu H, Zhang Y (2014) Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156(1–2):45–68

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Lister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vargas-Landin, D.B., Pflüger, J., Lister, R. (2018). Generation of Whole Genome Bisulfite Sequencing Libraries for Comprehensive DNA Methylome Analysis. In: Jeltsch, A., Rots, M. (eds) Epigenome Editing. Methods in Molecular Biology, vol 1767. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7774-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7774-1_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7773-4

  • Online ISBN: 978-1-4939-7774-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics