Skip to main content

Editing the Epigenome: Overview, Open Questions, and Directions of Future Development

  • Protocol
  • First Online:
Epigenome Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1767))

Abstract

The introduction of CRISPR/Cas has resulted in a strong impulse for the field of gene-targeted epigenome reprogramming. In this approach EpiEditors are applied in cells, which consist of a DNA-binding part for targeting and a functional part to induce chromatin modifications at targeted genome loci. The accumulating evidence of epigenetic reprogramming of a given genomic locus resulting in gene expression changes indicated causal relationships of epigenetic marks instructing gene expression and opened the field for mainstream applications. In this perspective, an overview of the current status of the field is provided, including its applications and future perspectives. The dependence of critical parameters like specificity, effectivity, and sustainability of epigenome editing on experimental settings and conditions including the expression levels and the duration of the expression of the EpiEditors, their DNA-binding affinity and specificity, and the cross talk between EpiEditors and cellular chromatin modifiers is discussed. Once established in fully functional “plug-and-play” mode, epigenome editing will allow to better understand epigenetic expression control and to translate such knowledge into therapeutic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17(8):487–500. https://doi.org/10.1038/nrg.2016.59

    Article  CAS  PubMed  Google Scholar 

  2. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395. https://doi.org/10.1038/cr.2011.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schubeler D (2015) Function and information content of DNA methylation. Nature 517(7534):321–326. https://doi.org/10.1038/nature14192

    Article  CAS  PubMed  Google Scholar 

  4. Aiuti A, Roncarolo MG, Naldini L (2017) Gene therapy for ADA-SCID, the first marketing approval of an ex vivo gene therapy in Europe: paving the road for the next generation of advanced therapy medicinal products. EMBO Mol Med 9(6):737–740. https://doi.org/10.15252/emmm.201707573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kungulovski G, Jeltsch A (2016) Epigenome editing: state of the art, concepts, and perspectives. Trends Genet 32(2):101–113. https://doi.org/10.1016/j.tig.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  6. Thakore PI, Black JB, Hilton IB, Gersbach CA (2016) Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 13(2):127–137. https://doi.org/10.1038/nmeth.3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pulecio J, Verma N, Mejia-Ramirez E, Huangfu D, Raya A (2017) CRISPR/Cas9-based engineering of the epigenome. Cell Stem Cell 21(4):431–447. https://doi.org/10.1016/j.stem.2017.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Turner BM (2012) The adjustable nucleosome: an epigenetic signaling module. Trends Genet 28(9):436–444. https://doi.org/10.1016/j.tig.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  9. Henikoff S, Shilatifard A (2011) Histone modification: cause or cog? Trends Genet 27(10):389–396. https://doi.org/10.1016/j.tig.2011.06.006

    Article  CAS  PubMed  Google Scholar 

  10. de Groote ML, Verschure PJ, Rots MG (2012) Epigenetic editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res 40(21):10596–10613. https://doi.org/10.1093/nar/gks863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Laufer BI, Singh SM (2015) Strategies for precision modulation of gene expression by epigenome editing: an overview. Epigenetics Chromatin 8:34. https://doi.org/10.1186/s13072-015-0023-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Black JB, Adler AF, Wang HG, D’Ippolito AM, Hutchinson HA, Reddy TE, Pitt GS, Leong KW, Gersbach CA (2016) Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell 19(3):406–414. https://doi.org/10.1016/j.stem.2016.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Amabile A, Migliara A, Capasso P, Biffi M, Cittaro D, Naldini L, Lombardo A (2016) Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167(1):219–232.e214. https://doi.org/10.1016/j.cell.2016.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R (2016) Editing DNA methylation in the mammalian genome. Cell 167(1):233–247.e217. https://doi.org/10.1016/j.cell.2016.08.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stepper P, Kungulovski G, Jurkowska RZ, Chandra T, Krueger F, Reinhardt R, Reik W, Jeltsch A, Jurkowski TP (2017) Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase. Nucleic Acids Res 45(4):1703–1713. https://doi.org/10.1093/nar/gkw1112

    Article  CAS  PubMed  Google Scholar 

  16. Huang YH, Su J, Lei Y, Brunetti L, Gundry MC, Zhang X, Jeong M, Li W, Goodell MA (2017) DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A. Genome Biol 18(1):176. https://doi.org/10.1186/s13059-017-1306-z

    Article  PubMed  PubMed Central  Google Scholar 

  17. O’Geen H, Ren C, Nicolet CM, Perez AA, Halmai J, Le VM, Mackay JP, Farnham PJ, Segal DJ (2017) dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. Nucleic Acids Res 45(17):9901–9916. https://doi.org/10.1093/nar/gkx578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stolzenburg S, Beltran AS, Swift-Scanlan T, Rivenbark AG, Rashwan R, Blancafort P (2015) Stable oncogenic silencing in vivo by programmable and targeted de novo DNA methylation in breast cancer. Oncogene. https://doi.org/10.1038/onc.2014.470

  19. Kungulovski G, Nunna S, Thomas M, Zanger UM, Reinhardt R, Jeltsch A (2015) Targeted epigenome editing of an endogenous locus with chromatin modifiers is not stably maintained. Epigenetics Chromatin 8:12. https://doi.org/10.1186/s13072-015-0002-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu GL, Bestor TH (1997) Cytosine methylation targetted to pre-determined sequences. Nat Genet 17(4):376–378. https://doi.org/10.1038/ng1297-376

    Article  CAS  PubMed  Google Scholar 

  21. Jeltsch A, Jurkowska RZ, Jurkowski TP, Liebert K, Rathert P, Schlickenrieder M (2007) Application of DNA methyltransferases in targeted DNA methylation. Appl Microbiol Biotechnol 75(6):1233–1240. https://doi.org/10.1007/s00253-007-0966-0

    Article  CAS  PubMed  Google Scholar 

  22. Snowden AW, Gregory PD, Case CC, Pabo CO (2002) Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol 12(24):2159–2166

    Article  CAS  PubMed  Google Scholar 

  23. Li F, Papworth M, Minczuk M, Rohde C, Zhang Y, Ragozin S, Jeltsch A (2007) Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes. Nucleic Acids Res 35(1):100–112. https://doi.org/10.1093/nar/gkl1035

    Article  CAS  PubMed  Google Scholar 

  24. Siddique AN, Nunna S, Rajavelu A, Zhang Y, Jurkowska RZ, Reinhardt R, Rots MG, Ragozin S, Jurkowski TP, Jeltsch A (2013) Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity. J Mol Biol 425(3):479–491. https://doi.org/10.1016/j.jmb.2012.11.038

    Article  CAS  PubMed  Google Scholar 

  25. Falahi F, Huisman C, Kazemier HG, van der Vlies P, Kok K, Hospers GA, Rots MG (2013) Towards sustained silencing of HER2/neu in cancer by epigenetic editing. Mol Cancer Res 11(9):1029–1039. https://doi.org/10.1158/1541-7786.MCR-12-0567

    Article  CAS  PubMed  Google Scholar 

  26. Chen H, Kazemier HG, de Groote ML, Ruiters MH, Xu GL, Rots MG (2014) Induced DNA demethylation by targeting Ten-Eleven Translocation 2 to the human ICAM-1 promoter. Nucleic Acids Res 42(3):1563–1574. https://doi.org/10.1093/nar/gkt1019

    Article  CAS  PubMed  Google Scholar 

  27. Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, Ho QH, Sander JD, Reyon D, Bernstein BE, Costello JF, Wilkinson MF, Joung JK (2013) Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31(12):1137–1142. https://doi.org/10.1038/nbt.2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cano-Rodriguez D, Rots MG (2016) Epigenetic editing: on the verge of reprogramming gene expression at will. Curr Genet Med Rep 4(4):170–179. https://doi.org/10.1007/s40142-016-0104-3

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70:313–340. https://doi.org/10.1146/annurev.biochem.70.1.313

    Article  CAS  PubMed  Google Scholar 

  30. Jamieson AC, Miller JC, Pabo CO (2003) Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov 2(5):361–368. https://doi.org/10.1038/nrd1087

    Article  CAS  PubMed  Google Scholar 

  31. Geel TM, Ruiters MHJ, Cool RH, Halvic L, Voshart DC, Andrade Ruiz L, Niezen-Koning KE, Arimondo PB, Rots MG (2017) The past and presence of DNA targeting: from chemicals and DNA via proteins to RNA. Philos Trans Actions B:in press

    Google Scholar 

  32. Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29:183–212. https://doi.org/10.1146/annurev.biophys.29.1.183

    Article  CAS  PubMed  Google Scholar 

  33. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512. https://doi.org/10.1126/science.1178811

    Article  CAS  PubMed  Google Scholar 

  34. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333(6051):1843–1846. https://doi.org/10.1126/science.1204094

    Article  CAS  PubMed  Google Scholar 

  35. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183. https://doi.org/10.1016/j.cell.2013.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pattanayak V, Ramirez CL, Joung JK, Liu DR (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 8(9):765–770. https://doi.org/10.1038/nmeth.1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grimmer MR, Stolzenburg S, Ford E, Lister R, Blancafort P, Farnham PJ (2014) Analysis of an artificial zinc finger epigenetic modulator: widespread binding but limited regulation. Nucleic Acids Res 42(16):10856–10868. https://doi.org/10.1093/nar/gku708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hashimoto H, Wang D, Horton JR, Zhang X, Corces VG, Cheng X (2017) Structural basis for the versatile and methylation-dependent binding of CTCF to DNA. Mol Cell 66(5):711–720.e713. https://doi.org/10.1016/j.molcel.2017.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guilinger JP, Pattanayak V, Reyon D, Tsai SQ, Sander JD, Joung JK, Liu DR (2014) Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 11(4):429–435. https://doi.org/10.1038/nmeth.2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Polstein LR, Perez-Pinera P, Kocak DD, Vockley CM, Bledsoe P, Song L, Safi A, Crawford GE, Reddy TE, Gersbach CA (2015) Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators. Genome Res 25(8):1158–1169. https://doi.org/10.1101/gr.179044.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuscu C, Arslan S, Singh R, Thorpe J, Adli M (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32(7):677–683. https://doi.org/10.1038/nbt.2916

    Article  CAS  PubMed  Google Scholar 

  43. O’Geen H, Henry IM, Bhakta MS, Meckler JF, Segal DJ (2015) A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. Nucleic Acids Res 43(6):3389–3404. https://doi.org/10.1093/nar/gkv137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495. https://doi.org/10.1038/nature16526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500(7463):472–476. https://doi.org/10.1038/nature12466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mercer AC, Gaj T, Sirk SJ, Lamb BM, Barbas CF 3rd (2014) Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors. ACS Synth Biol 3(10):723–730. https://doi.org/10.1021/sb400114p

    Article  CAS  PubMed  Google Scholar 

  47. Zetsche B, Volz SE, Zhang F (2015) A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33(2):139–142. https://doi.org/10.1038/nbt.3149

    Article  CAS  PubMed  Google Scholar 

  48. Nihongaki Y, Kawano F, Nakajima T, Sato M (2015) Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol 33(7):755–760. https://doi.org/10.1038/nbt.3245

    Article  CAS  PubMed  Google Scholar 

  49. Polstein LR, Gersbach CA (2015) A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol 11(3):198–200. https://doi.org/10.1038/nchembio.1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen T, Gao D, Zhang R, Zeng G, Yan H, Lim E, Liang FS (2017) Chemically controlled epigenome editing through an inducible dCas9 system. J Am Chem Soc 139(33):11337–11340. https://doi.org/10.1021/jacs.7b06555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jeltsch A, Jurkowska RZ (2016) Allosteric control of mammalian DNA methyltransferases – a new regulatory paradigm. Nucleic Acids Res 44(18):8556–8575. https://doi.org/10.1093/nar/gkw723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Muller MM, Fierz B, Bittova L, Liszczak G, Muir TW (2016) A two-state activation mechanism controls the histone methyltransferase Suv39h1. Nat Chem Biol 12(3):188–193. https://doi.org/10.1038/nchembio.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jiao L, Liu X (2015) Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science 350(6258):aac4383. https://doi.org/10.1126/science.aac4383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bintu L, Yong J, Antebi YE, McCue K, Kazuki Y, Uno N, Oshimura M, Elowitz MB (2016) Dynamics of epigenetic regulation at the single-cell level. Science 351(6274):720–724. https://doi.org/10.1126/science.aab2956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Elgin SC, Reuter G (2013) Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb Perspect Biol 5(8):a017780. https://doi.org/10.1101/cshperspect.a017780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cornu TI, Mussolino C, Cathomen T (2017) Refining strategies to translate genome editing to the clinic. Nat Med 23(4):415–423. https://doi.org/10.1038/nm.4313

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Jeltsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rots, M.G., Jeltsch, A. (2018). Editing the Epigenome: Overview, Open Questions, and Directions of Future Development. In: Jeltsch, A., Rots, M. (eds) Epigenome Editing. Methods in Molecular Biology, vol 1767. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7774-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7774-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7773-4

  • Online ISBN: 978-1-4939-7774-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics