Advertisement

Orchid Seed and Pollen: A Toolkit for Long-Term Storage, Viability Assessment and Conservation

  • Philip T. Seaton
  • Silvério T. Hosomi
  • Ceci C. Custódio
  • Timothy R. Marks
  • Nelson B. Machado-Neto
  • Hugh W. Pritchard
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

The development of ex situ preservation techniques for seed and pollen provides a vital addition to orchid conservation using in situ and living collection approaches. The ability to both store and later efficiently distribute germplasm for reintroductions and maintenance of genetic diversity provides a powerful tool that can usefully operate beyond the confines of habitat loss and climate change. Currently a wealth of data and experience exists in both professional and amateur fields alike that requires effective global networking and sustainable resourcing to ensure that all practitioners of orchid conservation benefit. In this chapter we have summarised the current state of knowledge concerning the practice of both orchid seed and pollen storage, emphasising some of the problems that may be encountered. We also describe how current research shows that dry seeds, and potentially pollen, of many species have the capacity to survive in storage for a number of decades, if not longer, at low and cryogenic temperatures. Although within the plant kingdom orchid seeds may still be described as being short-lived, we highlight new techniques for storage and assessment of viability and germination that are continually being developed and applied more broadly to a wider range of species, to improve longevity and enhance measurement techniques. We emphasise throughout the need for more comparative data acquisition, information and interpretation of the variation in responses across the family, so as to help inform the global community of how best to handle orchid germplasm.

Key words

Seed banks Pollen Germination Longevity Tetrazolium test Desiccation 

References

  1. 1.
    Koopowitz H (2001) Orchids and their conservation. Timber Press, OregonGoogle Scholar
  2. 2.
    Yam TW, Arditti J, Cameron KM (2009) “The orchids have been a splendid sport”—an alternative look at Charles Darwin’s contribution to orchid biology. Am J Bot 96:2128–2154CrossRefGoogle Scholar
  3. 3.
    Global Strategy for Plant Conservation (2011–2020) https://www.cbd.int/gspc/targets.shtmL
  4. 4.
    Greatwood J (1984) Extract from the proceedings of the International Orchid Commission, March 1984. Am Orchid Soc Bull 53:737Google Scholar
  5. 5.
    Swarts ND, Dixon KW (2009) Perspectives on orchid conservation in botanic gardens. Trends Plant Sci 14:590–598CrossRefGoogle Scholar
  6. 6.
    Marks TR, Seaton PT, Pritchard HW (2014) Desiccation tolerance, longevity and seed-siring ability of entomophilous pollen from UK native orchid species. Ann Bot 114:561–569CrossRefGoogle Scholar
  7. 7.
    Seaton PT (2009) Orchids in peril. Orchid Rev 117:82–84Google Scholar
  8. 8.
    Ferreira D, Richards M, Seaton PT (2012) Saving Florida’s Cigar Orchid. Orchid Rev 120:158–161Google Scholar
  9. 9.
    Yam TW (2013) Native Orchids of Singapore—diversity, identification and conservation. National Parks Board, Singapore Botanic Gardens, SingaporeGoogle Scholar
  10. 10.
    Yam TW, Tay F, Ang P, Soh W (2013) Conservation reintroduction and rediscovery of the native orchids of Singapore—new perspectives on survivorship ecology. In Elliot J, Kurzweil HF, O’Byrne P, Tan KW, Van der Schans AS, Wong SM, Yam TW (Eds) Proceedings of the 20th World Orchid Conference, Singapore, 13–20 November 2011, pp 155–163Google Scholar
  11. 11.
    Pritchard HW, Poynter ALC, Seaton PT (1999) Inter-specific variation in orchid seed longevity in relation to ultra-drying and cryo-preservation. Lindleyana 14:92–101Google Scholar
  12. 12.
    Knudson L (1954) Storage and viability of orchid seed. Am Orchid Soc Bull 22:260–260Google Scholar
  13. 13.
    Pritchard HW, Seaton PT (1993) Orchid seed storage: historical perspective, current status, and future prospects for long-term conservation. Selbyana 14:89–104Google Scholar
  14. 14.
    Hay F (2004) The seed viability equations: the normal distribution and probits. Millennium Seed Bank Project Kew. http://data.kew.org/sid/viability/SeedViabilityEquationsFHDec04.pdf. Accessed 9 Sept 2016
  15. 15.
    Hay FR, Mead A, Bloomberg M (2014) Modelling seed germination in response to continuous variables: use and limitations of probit analysis and alternative approaches. Seed Sci Res 24:165–186CrossRefGoogle Scholar
  16. 16.
    Newton R, Hay F, Probert R (2014) Protocol for comparative seed longevity testing. Technical Information Sheet_01. Millennium Seed Bank Partnership: ArdinglyGoogle Scholar
  17. 17.
    Hay FR, Adams J, Manger K, Probert R (2008) The use of nonsaturated lithium chloride solutions for experimental control of seed water content. Seed Sci Technol 36:737–746CrossRefGoogle Scholar
  18. 18.
    Hay FR, Merritt DJ, Soanes JA, Dixon KW (2010) Comparative longevity of Australian orchid (Orchidaceae) seeds under experimental and low temperature storage conditions. Bot J Linn Soc 164:26–41CrossRefGoogle Scholar
  19. 19.
    Ellis RH, Roberts EH (1980) Improved equations for the prediction of seed longevity. Ann Bot 45:13–30CrossRefGoogle Scholar
  20. 20.
    Pritchard HW, Dickie JB (2003) Predicting seed longevity: the use and abuse of seed viability equations. In: Smith RD et al (eds) Seed conservation: turning science into practice. Royal Botanic Gardens, Kew, pp 653–721Google Scholar
  21. 21.
    Vendrame WA, Carvalho VS, Dias JMM, Maguire I (2008) Pollination of Dendrobium hybrids using cryopreserved pollen. Hortscience 43:264–267Google Scholar
  22. 22.
    Franchi GG, Piotto B, Nepi M, Baskin CC, Baskin JM, Pacini E (2011) Pollen and seed desiccation tolerance in relation to degree of developmental arrest, dispersal, and survival. J Exp Bot 62:5267–5281CrossRefGoogle Scholar
  23. 23.
    Johansen BO (1990) Incompatibility in Dendrobium (Orchidaceae). Bot J Linn Soc 103:165–196CrossRefGoogle Scholar
  24. 24.
    Millner HJ, McCrea AR, Baldwin TC (2015) An investigation of self-incompatibility within the genus Restrepia. Am J Bot 102:487–494CrossRefGoogle Scholar
  25. 25.
    Pritchard HW, Prendergast FG (1989) Factors influencing the germination and storage characteristics of orchid pollen. In: Pritchard HW (ed) Modern methods in orchid conservation: the role of physiology, ecology and management. Cambridge University Press, Cambridge, pp 1–16CrossRefGoogle Scholar
  26. 26.
    Cheyne P (2003) Access and benefit-sharing agreements. In: Smith RD, Dickie JB, Linington SH, Pritchard HW, Probert RJ (eds) Seed conservation turning science into practice. The Royal Botanic Gardens, Kew, pp 5–26Google Scholar
  27. 27.
    Yam TW, Ghani AKA, Ichihashi S, Thame A, Rao AN, Avadhani PN, Nair H, Hew CS, Arditti J, Tatarenko IV (2007) Time from pollination to fruit ripening, seed maturation and germination. In: Cameron KM, Arditti J, Kull T (eds) Orchid biology: reviews and perspectives, IX. Botanical Garden Press, New York, pp 433–506Google Scholar
  28. 28.
    Arditti J (1992) Fundamentals of orchid biology. Wiley, New York, p 539Google Scholar
  29. 29.
    Ferdy JB, Loriot S, Sandmeier M, Lefranc M, Raquin C (2001) Inbreeding depression in a rare deceptive orchid. Can J Bot 79:1181–1188Google Scholar
  30. 30.
    Cozzolino S, Widmer A (2005) Orchid diversity: an evolutionary consequence of deception? Trends Ecol Evol 20:487–494CrossRefGoogle Scholar
  31. 31.
    Sletvold N, Grindeland JM, Zu P, Ågren J (2012) Strong inbreeding depression and local outbreeding depression in the rewarding orchid Gymnadenia conopsea. Conserv Genet 13:1305–1315CrossRefGoogle Scholar
  32. 32.
    Arditti J (1992) Fundamentals of orchid biology. Wiley, New York, pp 303–304Google Scholar
  33. 33.
    Wexler A, Hasegawa S (1954) Relative humidity-temperature relationships of some saturated salt solutions in the temperature range 0 to 50 °C. J Res Nat Bureau of Standards 53, No. 1, Research paper 2512Google Scholar
  34. 34.
    Popova E, Kim HH, Saxena PK et al (2016) Frozen beauty: the cryobiotechnology of orchid diversity. Biotechnol Adv 34:380–403CrossRefGoogle Scholar
  35. 35.
    Seaton PT, Hailes NSJ (1989) Effect of temperature and moisture content on the viability of Cattleya aurantiaca seed. Modern methods in orchid conservation: the role of physiology, ecology and management. Cambridge University Press, Cambridge, pp 17–29Google Scholar
  36. 36.
    Seaton PT, Pritchard HW (2008) Life in the freezer. Orchids 67:762–773Google Scholar
  37. 37.
    Popova EV, Han SH, Moltchanova E et al (2013) Systematic overestimation of Salicaceae seed survival using radicle emergence in response to drying and storage: implications for ex situ seed banking. Acta Physiol Plant 35:3015–3025CrossRefGoogle Scholar
  38. 38.
    Arditti J (1982) In: Arditti J (ed) Appendix: Orchid seed germination and seedling culture—a manual in orchid biology—reviews and perspectives II. Cornell University Press, Ithaca, NY, pp 242–370Google Scholar
  39. 39.
    Nadarajan J, Wood S, Marks TR, Seaton PT, Pritchard HW (2011) Nutritional requirements for in vitro seed germination of 12 terrestrial, lithophytic and epiphytic orchids. J Trop For Sci 23:204–212Google Scholar
  40. 40.
    Gamborg OL, Mille RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:1113–1127CrossRefGoogle Scholar
  41. 41.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  42. 42.
    Knudson L (1946) A new nutrient solution for the germination of orchid seeds. Bot Gaz 73:1–25CrossRefGoogle Scholar
  43. 43.
    Van Waes JM, Debergh PC (1986) In vitro germination of some Western European orchids. Physiol Plant 67:253–261CrossRefGoogle Scholar
  44. 44.
    Malmgren S (1996) Orchid propagation: theory and practice. In: Allen C (ed) North American native orchids: propagation and production. North American Native Terrestrial Orchid Conference, Germantown, Maryland, pp 63–71Google Scholar
  45. 45.
    Seaton PT, Ramsay M (2005) Growing orchids from seed. Royal Botanic Gardens, KewGoogle Scholar
  46. 46.
    Seaton PT, Ramsay M (2009) Cultivo de orquídeas por semillas. Royal Botanic Gardens, KewGoogle Scholar
  47. 47.
    Machado-Neto NB, Custódio CC (2005) A medium for non-commercial sowing of orchid seed. Selbyana 26:316–317Google Scholar
  48. 48.
    Maguire JD (1962) Speed of germination aid in selection and evaluation of seedling emergence and vigor. Crop Sci 2:176–177CrossRefGoogle Scholar
  49. 49.
    Hosomi ST, Santos RB, Custodio CC, Seaton PT, Marks TR, Machado-Neto NB (2011) Preconditioning Cattleya seeds to improve the efficacy of the tetrazolium test for viability. Seed Sci Technol 39:178–189CrossRefGoogle Scholar
  50. 50.
    Hosomi ST, Custodio CC, Seaton PT, Marks TR, Machado-Neto NB (2012) Improved assessment of viability and germination of Cattleya (Orchidaceae) seeds following storage. In Vitro Cell Dev Biol Plant 48:127–136CrossRefGoogle Scholar
  51. 51.
    Custódio CC, Marks TR, Pritchard HW, Hosomi ST, Machado-Neto NB (2016) Improved tetrazolium viability testing in orchid seeds with a thick carapace (Dactylorhiza fuchsii) or dark seed coat (Vanda curvifolia). Seed Sci Technol 44:1–12CrossRefGoogle Scholar
  52. 52.
    Lallana VH, Garcia LF (2013) Pre-treatments effect in Trichocentrum jonesianum seeds viability test. Invest Agrar 15:120–132Google Scholar
  53. 53.
    Soares JS, Rosa YBCJ, Tatara MB, Sorgato JC, Lemes CSR (2014) Viability identification of orchid seeds by the tetrazolium test. Semina Ciênc Agrár 35:2275–2284CrossRefGoogle Scholar
  54. 54.
    Wood CB, Pritchard HW, Miller AP (2000) Simultaneous preservation of orchid seed and fungal symbionts using encapsulation-dehydration is dependent on moisture content and storage temperature. CryoLetters 21:125–136PubMedGoogle Scholar
  55. 55.
    Sommerville KD, Siemon JP, Wood CB, Offord CA (2008) Simultaneous encapsulation of seed and mycorrhizal fungi for long-term storage and propagation of terrestrial orchids. Aust J Bot 56:609–615CrossRefGoogle Scholar
  56. 56.
    Saiprasad GVS, Polisetty R (2003) Propagation of three orchid genera use in encapsulated protocorm-like bodies. In Vitro Cell Dev Biol Plant 39:42–48CrossRefGoogle Scholar
  57. 57.
    Walters C, Reilley AA, Reeves PA, Baszcak J, Richards CM (2006) The utility of aged seeds in DNA banks. Seed Sci Res 16:169–178CrossRefGoogle Scholar
  58. 58.
    Hay FR, Probert RJ (1995) Seed maturity and the effects of different drying conditions on desiccation tolerance and seed longevity in Foxglove (Digitalis purpurea L.) Ann Bot 76:639–647CrossRefGoogle Scholar
  59. 59.
    Gold K, Manger K (2014) Selecting containers for long-term seed storage. Technical Information Sheet_06. http://www.kew.org/sites/default/files/06-Containers%20web.pdf
  60. 60.
    Sutcliffe V, Adams J (2014) Low-cost monitors of seed moisture status. Technical Information Sheet_07. http://www.kew.org/sites/default/files/07-Low-cost%20moisture%20monitors%20web.pdf
  61. 61.
    Rasmussen HN (1992) Seed dormancy patterns in Epipactis palustris (Orchidaceae): requirements for germination and establishment of mycorrhizal. Physiol Plant 86:161–167CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Philip T. Seaton
    • 1
  • Silvério T. Hosomi
    • 2
  • Ceci C. Custódio
    • 3
  • Timothy R. Marks
    • 1
  • Nelson B. Machado-Neto
    • 3
  • Hugh W. Pritchard
    • 1
  1. 1.Comparative Seed Biology, Comparative Plant and Fungal Biology, Royal Botanic Gardens KewArdinglyUK
  2. 2.College of Biological Sciences, Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo TavaresPresidente PrudenteBrazil
  3. 3.Agronomy College, Universidade do Oeste Paulista (UNOESTE), Rodovia Raposa TavaresPresidente PrudenteBrazil

Personalised recommendations