Skip to main content

The Use of Laser Microdissection to Investigate Cell-Specific Gene Expression in Orchid Tissues

  • Protocol
  • First Online:
Orchid Propagation: From Laboratories to Greenhouses—Methods and Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

In the past decade, laser microdissection (LMD) technology has been widely applied to plant tissues, highlighting the role of different cell-type populations during plant–microbe interactions. In this chapter, a method to apply the LMD approach to study gene expression in specific cell-type populations of orchid mycorrhizal protocorms and roots is described in detail, starting from the preparation of biological material to gene expression analysis by RT-PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith SE, Read D (2008) Mycorrhizal Symbiosis, 3rd edn. Academic Press, New York

    Google Scholar 

  2. Leake J (2004) Myco-heterotroph/epiparasitic plant interactions with ectomycorrhizal and arbuscular mycorrhizal fungi. Plant Biol 7:422–428

    CAS  Google Scholar 

  3. Hynson NA, Weiß M, Preiss K, Gebauer G, Treseder KK (2013) Fungal host specificity is not a bottleneck for the germination of Pyroleae species (Ericaceae) in a Bavarian forest. Mol Ecol 22:1473–1481

    Article  Google Scholar 

  4. Perotto S, Rodda M, Benetti A, Sillo F, Ercole E, Rodda M, Girlanda M, Murat C, Balestrini R (2014) Gene expression in mycorrhizal orchid protocorms suggests a friendly plant–fungus relationship. Planta 239:1337–1349

    Article  CAS  Google Scholar 

  5. Zhao M-M, Zhang G, Zhang D-W, Hsiao Y-Y, Guo S-X (2013) ESTs Analysis reveals putative genes involved in symbiotic seed germination in Dendrobium officinale. PLoS One 8:e72705

    Article  CAS  Google Scholar 

  6. Liu S-S, Chen J, Li S-C, Zeng X, Meng Z-X, Guo S-X (2015) Comparative transcriptome analysis of genes involved in GA-GID1-DELLA regulatory module in symbiotic and asymbiotic seed germination of Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae). Int J Mol Sci 16:30,190–30,203

    Article  CAS  Google Scholar 

  7. Fochi V, Chitarra W, Kohler A, Voyron S, Singan VR, Lindquist EA, Barry KW, Girlanda M, Grigoriev IV, Martin F, Balestrini R, Perotto S (2017) Fungal and plant gene expression in the Tulasnella calosporaSerapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. New Phytol 213:365–379

    Article  CAS  Google Scholar 

  8. Balestrini R, Gómez-Ariza J, Lanfranco L, Bonfante P (2007) Laser Microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact 20:1055–1062

    Article  CAS  Google Scholar 

  9. Hogekamp C, Arndt D, Pareira PA, Becker JD, Hohnjec N, Küster H (2011) Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread. Plant Physiol 157:2023–2043

    Article  CAS  Google Scholar 

  10. Hogekamp C, Küster H (2013) A roadmap of cell-type specific gene expression during sequential stages of the arbuscular mycorrhiza symbiosis. BMC Genomics 14:306

    Article  CAS  Google Scholar 

  11. Emmert-Buck MR, Bonner RF, Smith PD, Chauqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274:998–1001

    Article  CAS  Google Scholar 

  12. Day RC, Grossniklaus U, Macknight RC (2005) Be more specific! Laser-assisted microdissection of plant cells. Trends Plant Sci 10:397–406

    Article  CAS  Google Scholar 

  13. Nelson T, Tausta SL, Gandotra N, Liu T (2006) Laser microdissection of plant tissue: what you see is what you get. Annu Rev Plant Biol 57:181–201

    Article  CAS  Google Scholar 

  14. Ramsay K, Jones MGK, Wang Z (2006) Laser capture microdissection: a novel approach to microanalysis of plant–microbe interactions. Mol Plant Pathol 7:429–435

    Article  CAS  Google Scholar 

  15. Day RC, McNoe LA, Macknight RC (2007) Transcript analysis of laser microdissected plant cells. Technical focus. Physiol Plant 129:267–282

    Article  CAS  Google Scholar 

  16. Balestrini R, Bonfante P (2008) Laser microdissection (LM): applications to plant materials. Plant Biosyst 142:331–336

    Article  Google Scholar 

  17. Millar JL, Becker MG, Belmonte MF (2015) Laser microdissection of plant tissues. In: Yeung ECT, Stasolla C, Sumner MJ, Huang BQ (eds) Plant microtechniques and protocols. Springer International Publishing, Switzerland, pp 337–350

    Chapter  Google Scholar 

  18. Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960

    Article  CAS  Google Scholar 

  19. Galbraith DW, Birnbaum K (2006) Global studies of cell type-specific gene expression in plants. Annu Rev Plant Biol 57:451–475

    Article  CAS  Google Scholar 

  20. Asano T, Masumura T, Kusano H, Kikuchi S, Kurita A, Shimada H, Kadowaki K (2002) Construction of specialized cDNA library from plant cells isolated by laser capture microdissection: toward comprehensive analysis of the genes expressed in the rice phloem. Plant J 32:401–408

    Article  CAS  Google Scholar 

  21. Kerk NM, Ceserani T, Tausta SL, Sussex IM, Nelson TM (2003) Laser capture microdissection of cells from plant tissues. Plant Physiol 132:27–35

    Article  CAS  Google Scholar 

  22. Klink VP, Alkharouf N, MacDonald M, Matthews B (2005) Laser capture microdissection (LCM) and expression analyses of Glycine max (soybean) syncytium containing root regions formed by the plant pathogen Heterodera glycines (soybean cyst nematode). Plant Mol Biol 59:965–979

    Article  CAS  Google Scholar 

  23. Inada N, Wildermuth MC (2005) Novel tissue preparation method and cell-specific marker for laser microdissection of Arabidopsis mature leaf. Planta 221:9–16

    Article  CAS  Google Scholar 

  24. Cai S, Lashbrook CC (2006) Laser capture microdissection of plant cells from tape transferred paraffin sections promotes recovery of structurally intact RNA for global gene profiling. Plant J 48:628–637

    Article  CAS  Google Scholar 

  25. Tang W, Coughlan S, Crane E, Beatty M, Duvick J (2006) The application of laser microdissection to in planta gene expression profiling of the maize anthracnose stalk rot fungus Colletotrichum graminicola. Mol Plant Microbe Interact 19:1240–1250

    Article  CAS  Google Scholar 

  26. Balestrini R, Gómez-Ariza J, Klink VP, Bonfante P (2009) Application of laser microdissection to plant pathogenic and symbiotic interaction. J Plant Interact 4:81–92

    Article  CAS  Google Scholar 

  27. Gomez SK, Harrison MJ (2009) Laser microdissection and its application to analyze gene expression in arbuscular mycorrhizal symbiosis. Pest Manag Sci 65:504–511

    Article  CAS  Google Scholar 

  28. Fiorilli V, Klink VP, Balestrini R (2012) Proteomic analyses of cells isolated by laser microdissection. In: Leung H-C (ed) Integrative proteomics. InTech. ISBN: 978-953-51-0070-6

    Google Scholar 

  29. Fang J, Schneider B (2014) Laser microdissection: a sample preparation technique for plant micrometabolic profiling. Phytochem Anal 25:307–313

    Article  CAS  Google Scholar 

  30. Gautam V, Sarkar AK (2015) Laser assisted microdissection, an efficient technique to understand tissue specific gene expression patterns and functional genomics in plants. Mol Biotechnol 57:299–308

    Article  CAS  Google Scholar 

  31. Nakazono M, Qiu F, Borsuk LA, Schable PS (2003) Laser capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: Identification of genes expressed differentially in epidermal cells or vascular tissue of maize. Plant Cell 15:583–596

    Article  CAS  Google Scholar 

  32. Klink VP, Overall CC, Alkharouf NW, MacDonald MH, Matthews BF (2007) Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean (Glycine max) roots infected by the soybean cyst nematode (Heterodera glycines). Planta 226:1389–1409

    Article  CAS  Google Scholar 

  33. Ithal N, Recknor J, Nettleton D, Hearne L, Maier T et al (2007) Parallel genome-wide expression profiling of host and pathogen during soybean cyst nematode infection of soybean. Mol Plant Microbe Interact 20:293–305

    Article  CAS  Google Scholar 

  34. Hacquard S, Delaruelle C, Legué V, Tisserant E, Kohler A, Frey P, Martin F, Duplessis S (2010) Laser capture microdissection of Uredinia formed by Melampsora larici-populina revealed a transcriptional switch between biotrophy and sporulation. Mol Plant Microbe Interact 23:1275–1286

    Article  CAS  Google Scholar 

  35. Chandran D, Inada N, Hather G, Kleindt CK, Wildermuth MC (2010) Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. PNAS 107:460–465

    Article  CAS  Google Scholar 

  36. Hacquard S, Tisserant E, Brun A, Legue V, Martin F, Kohler A (2013) Laser microdissection and microarray analysis of Tuber melanosporum ectomycorrhizas reveal functional heterogeneity between mantle and Hartig net compartments. Environ Microbiol 15:1853–1869

    Article  CAS  Google Scholar 

  37. Gomez KS, Javot H, Deewatthanawong P, Torres-Jerez Y, Tang I, Blancaflor EB, Udvardi MK, Harrison MJ (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9:10

    Article  Google Scholar 

  38. Guether M, Neuhäuser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009) A mycorrhizal specific ammonium transporter from Lotus japonicus acquires nitrogen. Plant Physiol 150:73–83

    Article  CAS  Google Scholar 

  39. Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F (2012) Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J 69:510–528

    Article  CAS  Google Scholar 

  40. Balestrini R, Nerva L, Sillo F, Girlanda M, Perotto S (2014) Plant and fungal gene expression in mycorrhizal protocorms of the orchid Serapias vomeracea colonized by Tulasnella calospora. Plant Signal Behav 9:11

    Article  Google Scholar 

  41. Gómez-Ariza J, Balestrini R, Novero M, Bonfante P (2009) Cell-specific gene expression of phosphate transporters in mycorrhizal tomato roots. Biol Fertil Soils 45:845–853

    Article  Google Scholar 

  42. Stasolla C, Yeung EC (2015) Paraffin and polyester waxes. In: Yeung ECT, Stasolla C, Sumner MJ, Huang BQ (eds) Plant microtechniques and protocols. Springer, New York, pp 45–66

    Chapter  Google Scholar 

  43. Fochi V, Falla N, Girlanda M, Perotto S, Balestrini R (2017) Cell-Specific Expression of Plant Nutrient Transporter Genes in Orchid Mycorrhizae. Plant Sci 263, 39–45

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The LMD system upgrade was possible thanks to the financial support of the “Compagnia di San Paolo” (Torino, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella Balestrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Balestrini, R., Fochi, V., Lopa, A., Perotto, S. (2018). The Use of Laser Microdissection to Investigate Cell-Specific Gene Expression in Orchid Tissues. In: Lee, YI., Yeung, ET. (eds) Orchid Propagation: From Laboratories to Greenhouses—Methods and Protocols. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7771-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7771-0_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7770-3

  • Online ISBN: 978-1-4939-7771-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics