Skip to main content
Book cover

CpG Islands pp 231–238Cite as

Genome-Wide Mapping of Protein–DNA Interactions on Nascent Chromatin

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1766))

Abstract

Chromatin immunoprecipitation (ChIP) is the most widely used method to analyze protein–DNA interactions in vivo. Coupled with next generation sequencing, ChIP-seq experiments map protein–DNA interactions in a genome-wide fashion. Here we describe a novel method called nasChIP-seq for mapping genome-wide occupancy of posttranslationally modified histones or transcription factors on newly replicated DNA.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Struhl K (2007) Interpreting chromatin Immunoprecipitation experiments. In: Zuk D (ed) Evaluating techniques in biochemical research. Cell Press, Cambridge, MA

    Google Scholar 

  2. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  Google Scholar 

  3. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502

    Article  CAS  Google Scholar 

  4. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  Google Scholar 

  5. Chaya D, Hayamizu T, Bustin M, Zaret KS (2001) Transcription factor FoxA (HNF3) on a nucleosome at an enhancer complex in liver chromatin. J Biol Chem 276:44385–44389

    Article  CAS  Google Scholar 

  6. Metivier R, Penot G, Hübner MR, Reid G, Brand H, Kos M et al (2003) Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115:751–763

    Article  CAS  Google Scholar 

  7. Petruk S, Sedkov Y, Johnston DM, Hodgson JW, Black KL, Kovermann SK et al (2012) TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 150:922–933

    Article  CAS  Google Scholar 

  8. Sirbu BM, Couch FB, Feigerle JT, Bhaskara S, Hiebert SW, Cortez D (2011) Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev 25:1320–1327

    Article  CAS  Google Scholar 

  9. Sirbu BM, Couch FB, Cortez D (2012) Monitoring the spatiotemporal dynamics of proteins at replication forks and in assembled chromatin using isolation of proteins on nascent DNA. Nat Protoc 7:594–605

    Article  CAS  Google Scholar 

  10. Lopez-Contreras AJ, Ruppen I, Nieto-Soler M, Murga M, Rodriguez-Acebes S, Remeseiro S et al (2013) A proteomic characterization of factors enriched at nascent DNA molecules. Cell Rep 3:1105–1116

    Article  CAS  Google Scholar 

  11. Aranda S, Rutishauser D, Ernfors P (2014) Identification of a large protein network involved in epigenetic transmission in replicating DNA of embryonic stem cells. Nucleic Acids Res 42:6972–6986

    Article  CAS  Google Scholar 

  12. Li L, Lyu X, Hou C, Takenaka N, Nguyen HQ, Ong CT et al (2015) Widespread rearrangement of 3D chromatin organization underlies Polycomb-mediated stress-induced silencing. Mol Cell 58:216–231

    Article  CAS  Google Scholar 

  13. Gertz J, Savic D, Varley KE, Partridge EC, Safi A, Jain P et al (2013) Distinct properties of cell-type-specific and shared transcription factor binding sites. Mol Cell 52:25–36

    Article  CAS  Google Scholar 

  14. Lee TI, Johnstone SE, Young RA (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc 1:729–748

    Article  CAS  Google Scholar 

  15. Bowman SK, Simon MD, Deaton AM, Tolstorukov M, Borowsky ML, Kingston RE (2013) Multiplexed Illumina sequencing libraries from picogram quantities of DNA. BMC Genomics 14:466. https://doi.org/10.1186/1471-2164-14-466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory was supported by U.S. Public Health Service Award R01 GM035463 from the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xu, C., Corces, V.G. (2018). Genome-Wide Mapping of Protein–DNA Interactions on Nascent Chromatin. In: Vavouri, T., Peinado, M. (eds) CpG Islands. Methods in Molecular Biology, vol 1766. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7768-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7768-0_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7767-3

  • Online ISBN: 978-1-4939-7768-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics