Proteomics Analysis of Colorectal Cancer Cells

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1765)

Abstract

Proteomics allows the simultaneous detection and identification of thousands of proteins within a sample. Here, we describe a quantitative method to compare protein expression and subcellular localization of different cell lines representative of different stages of colorectal cancer using stable isotope labeling with amino acids in culture, or SILAC. We also describe a biochemical fractionation approach to separate different cellular compartments and the necessary steps to obtain a specific proteomic profile of each cell line. This technique enables a comprehensive proteomic analysis of cancer cell lines and the identification of pathways that are deregulated in different cancer cell lines.

Key words

Proteomics Colorectal cancer SILAC Subcellular fractionation Mass spectrometry 

References

  1. 1.
    James P (1997) Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys 30(4):279–331CrossRefPubMedGoogle Scholar
  2. 2.
    Kenyon GL, DeMarini DM, Fuchs E, Galas DJ, Kirsch JF, Leyh TS, Moos WH, Petsko GA, Ringe D, Rubin GM, Sheahan LC, National Research Council Steering Committee (2002) Defining the mandate of proteomics in the post-genomics era: workshop report. Mol Cell Proteomics 1(10):763–780PubMedGoogle Scholar
  3. 3.
    Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Genet 33(Suppl):311–323CrossRefPubMedGoogle Scholar
  4. 4.
    Harsha HC, Molina H, Pandey A (2008) Quantitative proteomics using stable isotope labeling with amino acids in cell culture. Nat Protoc 3(3):505–516CrossRefPubMedGoogle Scholar
  5. 5.
    Boisvert FM, Lam YW, Lamont D, Lamond AI (2010) A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage. Mol Cell Proteomics 9(3):457–470CrossRefPubMedGoogle Scholar
  6. 6.
    Drissi R, Dubois ML, Boisvert FM (2013) Proteomics methods for subcellular proteome analysis. FEBS J 280:5626–5634CrossRefPubMedGoogle Scholar
  7. 7.
    Hung MC, Link W (2011) Protein localization in disease and therapy. J Cell Sci 124(Pt.20):3381–3392CrossRefPubMedGoogle Scholar
  8. 8.
    Mathieu AA, Ohl-Séguy E, Dubois ML, Jean D, Jones C, Boudreau F, Boisvert FM (2016) Subcellular proteomics analysis of different stages of colorectal cancer cell lines. Proteomics 23:3009–3018CrossRefGoogle Scholar
  9. 9.
    Leibovitz A, Stinson JC, McCombs WB, McCoy CE, Mazur KC, Mabry ND (1976) Classification of human colorectal adenocarcinoma cell lines. Cancer Res 36(12):4562–4569PubMedGoogle Scholar
  10. 10.
    Fogh J, Fogh JM, Orfeo T (1977) One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 59(1):221–226CrossRefPubMedGoogle Scholar
  11. 11.
    Bendall SC, Hughes C, Stewart MH, Doble B, Bhatia M, Lajoie GA (2008) Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol Cell Proteomics 7(9):1587–1597CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Perreault N, Beaulieu JF (1996) Use of the dissociating enzyme thermolysin to generate viable human normal intestinal epithelial cell cultures. Exp Cell Res 224(2):354–364CrossRefPubMedGoogle Scholar
  13. 13.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372CrossRefPubMedGoogle Scholar
  14. 14.
    Cox J, Matic I, Hilger M, Nagaraj N, Selbach M, Olsen JV, Mann M (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4:698–705CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeCanada

Personalised recommendations