Advertisement

Identification and Functional Analysis of Gene Regulatory Sequences Interacting with Colorectal Tumor Suppressors

  • Katja Dahlgaard
  • Jesper Thorvald Troelsen
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1765)

Abstract

Several tumor suppressors possess gene regulatory activity. Here, we describe how promoter and promoter/enhancer reporter assays can be used to characterize a colorectal tumor suppressor proteins’ gene regulatory activity of possible target genes. In the first part, a bioinformatic approach to identify relevant gene regulatory regions of potential target genes is presented. In the second part, it is demonstrated how to prepare and carry out the functional assay.

We explain how to clone the bioinformatically identified gene regulatory regions into luciferase reporter plasmids by the use of the quick and efficient In-Fusion cloning method, and how to carry out transient transfections of Caco-2 colon cancer cells with the produced luciferase reporter plasmids using polyethyleneimine (PEI). A plan describing how to set up and carry out the luciferase expression assay is presented. The luciferase/β-galactosidase (Dual Light) assay presented is a highly sensitive assay that can monitor small changes in the promoter/enhancer activity and includes an internal control monitoring transfection efficiency.

Key words

CDX2 GPA33 Enhancer Promoter Transcription factor Promoter reporter assay Transfection Luciferase 

Notes

Acknowledgment

This work was supported by The Danish Council for Independent Research (4004-00140B). We would like to thank Johanne Davidsen and Sylvester Larsen for reagents and fruitful discussions on the method and Louise Torp Dalgaard for constructive comments.

References

  1. 1.
    Olsen J, Espersen ML, Jess P, Kirkeby LT, Troelsen JT (2014) The clinical perspectives of CDX2 expression in colorectal cancer: a qualitative systematic review. Surg Oncol 23(3):167–176CrossRefPubMedGoogle Scholar
  2. 2.
    Yao HS, Wang J, Zhang XP, Wang LZ, Wang Y, Li XX, Jin KZ, Hu ZQ, Wang WJ (2016) Hepatocyte nuclear factor 4alpha suppresses the aggravation of colon carcinoma. Mol Carcinog 55(5):458–472CrossRefPubMedGoogle Scholar
  3. 3.
    Chawengsaksophak K, James R, Hammond VE, Kontgen F, Beck F (1997) Homeosis and intestinal tumours in Cdx2 mutant mice. Nature 386:84–87CrossRefPubMedGoogle Scholar
  4. 4.
    Brabletz T, Spaderna S, Kolb J, Hlubek F, Faller G, Bruns CJ, Jung A, Nentwich J, Duluc I, Domon-Dell C, Kirchner T, Freund JN (2004) Down-regulation of the homeodomain factor Cdx2 in colorectal cancer by collagen type I: an active role for the tumor environment in malignant tumor progression. Cancer Res 64(19):6973–6977CrossRefPubMedGoogle Scholar
  5. 5.
    Dalerba P, Sahoo D, Paik S, Guo X, Yothers G, Song N, Wilcox-Fogel N, Forgo E, Rajendran PS, Miranda SP, Hisamori S, Hutchison J, Kalisky T, Qian D, Wolmark N, Fisher GA, van de Rijn M, Clarke MF (2016) CDX2 as a prognostic biomarker in stage II and stage III colon cancer. N Engl J Med 374(3):211–222CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hinkel I, Duluc I, Martin E, Guenot D, Freund JN, Gross I (2012) Cdx2 controls expression of the protocadherin Mucdhl, an inhibitor of growth and beta-catenin activity in colon cancer cells. Gastroenterology 142(4):875–885 e873CrossRefPubMedGoogle Scholar
  7. 7.
    Olsen AK, Coskun M, Bzorek M, Kristensen MH, Danielsen ET, Jorgensen S, Olsen J, Engel U, Holck S, Troelsen JT (2013) Regulation of APC and AXIN2 expression by intestinal tumor suppressor CDX2 in colon cancer cells. Carcinogenesis 34(6):1361–1369CrossRefPubMedGoogle Scholar
  8. 8.
    Boyd M, Hansen M, Jensen TG, Perearnau A, Olsen AK, Bram LL, Bak M, Tommerup N, Olsen J, Troelsen JT (2010) Genome-wide analysis of CDX2 binding in intestinal epithelial cells (Caco-2). J Biol Chem 285(33):25115–25125CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Garin-Chesa P, Sakamoto J, Welt S, Real F, Rettig W, Old L (1996) Organ-specific expression of the colon cancer antigen A33, a cell surface target for antibody-based therapy. Int J Oncol 9(3):465–471Google Scholar
  10. 10.
    Cooper SJ, Trinklein ND, Anton ED, Nguyen L, Myers RM (2006) Comprehensive analysis of transcriptional promoter structure and function in 1% of the human genome. Genome Res 16(1):1–10CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Boyd M, Coskun M, Lilje B, Andersson R, Hoof I, Bornholdt J, Dahlgaard K, Olsen J, Vitezic M, Bjerrum JT, Seidelin JB, Nielsen OH, Troelsen JT, Sandelin A (2014) Identification of TNF-alpha-responsive promoters and enhancers in the intestinal epithelial cell model Caco-2. DNA Res 21(6):569–583CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Verzi MP, Shin H, San Roman AK, Liu XS, Shivdasani RA (2013) Intestinal master transcription factor CDX2 controls chromatin access for partner transcription factor binding. Mol Cell Biol 33(2):281–292CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark

Personalised recommendations