Proteomic Profiling for Colorectal Cancer Biomarker Discovery

  • Paula Álvarez-Chaver
  • Loretta De Chiara
  • Vicenta Soledad Martínez-Zorzano
Part of the Methods in Molecular Biology book series (MIMB, volume 1765)


Nowadays, the ideal biomarker for colorectal cancer (CRC) has not been found. Two-dimensional electrophoresis (2-DE) and mass spectrometry (MS) are suitable techniques for searching new biomarkers. In this chapter, we describe methodology for biomarker discovery based on a proteomic approach. In addition, special attention is given to the sample preparation, including protein extraction, fractionation, and cleanup, as we consider this a critical step. Comparing the proteomic profile of tumor and mucosa, we identified the nucleoside diphosphate kinase A (NDKA) protein as a candidate biomarker for CRC. Finally, we validated NDKA with an ELISA kit using serum samples from individuals of a screening cohort. Our results suggest that serum NDKA is a potential biomarker for screening of CRC and premalignant advanced adenomas (AA).

Key words

Colorectal cancer Tissue Serum Biomarkers Proteomics Two-dimensional electrophoresis Mass spectrometry Western blot ELISA immunoassay Nucleoside diphosphate kinase A 


  1. 1.
    Duffy MJ, Lamerz R, Haglund C et al (2014) Tumor markers in colorectal cancer, gastric cancer and gastrointestinal stromal cancers: European group on tumor markers 2014 guidelines update. Int J Cancer 134:2513–2522CrossRefPubMedGoogle Scholar
  2. 2.
    Alvarez-Chaver P, Rodríguez-Piñeiro AM, Rodríguez-Berrocal FJ et al (2011) Selection of putative colorectal cancer markers by applying PCA on the soluble proteome of tumors: NDK A as a promising candidate. J Proteome 74:874–886CrossRefGoogle Scholar
  3. 3.
    Görg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4:3665–3685CrossRefPubMedGoogle Scholar
  4. 4.
    Otero-Estévez O, De Chiara L, Barcia-Castro L et al (2016) Evaluation of serum nucleoside diphosphate kinase A for the detection of colorectal cancer. Sci Rep 6:26703. Scholar
  5. 5.
    Alvarez-Chaver P, Otero-Estévez O, Páez de la Cadena M et al (2014) Proteomics for discovery of candidate colorectal cancer biomarkers. World J Gastroenterol 20:3804–3824CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–1607PubMedGoogle Scholar
  7. 7.
    Santoni V, Kieffer S, Desclaux D et al (2000) Membrane proteomics: Use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis 21:3329–3344CrossRefPubMedGoogle Scholar
  8. 8.
    Heukeshoven J, Dernick R (1985) Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis 6:103–112CrossRefGoogle Scholar
  9. 9.
    Shevchenko A, Wilm M, Vorm O et al (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858CrossRefPubMedGoogle Scholar
  10. 10.
    Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Crowther JR (2009) The Elisa Guidebook. Series title: Methods in Molecular Biology, vol Vol. 515, 2nd edn. Humana Press, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Paula Álvarez-Chaver
    • 1
  • Loretta De Chiara
    • 2
  • Vicenta Soledad Martínez-Zorzano
    • 2
  1. 1.Proteomics Unit, Structural Determination, Proteomics and Genomics Service, CACTIUniversity of VigoVigoSpain
  2. 2.Department of Biochemistry, Genetics and Immunology, Faculty of BiologyUniversity of VigoVigoSpain

Personalised recommendations