Skip to main content

Characterizing Intact Macromolecular Complexes Using Native Mass Spectrometry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1764))

Abstract

Native mass spectrometry (MS) enables the characterization of macromolecular assemblies with high sensitivity. It can reveal the stoichiometry of subunits as well as their two-dimensional interaction network and provide information regarding the dynamic behavior of macromolecular complexes. Here, we describe the workflow to perform native MS experiments. In addition, we illustrate the quality control analysis of proteins using MS in denaturing conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. de Hoffmann E, Stroobant V (2007) Mass spectrometry: principles and applications, 3rd edn. Wiley, New York, NY, p 502

    Google Scholar 

  2. Lossl P, van de Waterbeemd M, Heck AJ (2016) The diverse and expanding role of mass spectrometry in structural and molecular biology. EMBO J 35:2634–2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kebarle P, Verkerk UH (2009) Electrospray: from ions in solution to ions in the gas phase, what we know now. Mass Spectrom Rev 28:898–917

    Article  CAS  PubMed  Google Scholar 

  4. Konermann L, Ahadi E, Rodriguez AD, Vahidi S (2013) Unraveling the mechanism of electrospray ionization. Anal Chem 85:2–9

    Article  CAS  PubMed  Google Scholar 

  5. Cotter RJ (1999) Peer reviewed: the new time-of-flight mass spectrometry. Anal Chem 71:445A–451A

    Article  CAS  PubMed  Google Scholar 

  6. Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72:1156–1162

    Article  CAS  PubMed  Google Scholar 

  7. Perry RH, Cooks RG, Noll RJ (2008) Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom Rev 27:661–699

    Article  CAS  PubMed  Google Scholar 

  8. Sharon M (2013) Biochemistry. Structural MS pulls its weight. Science 340:1059–1060

    Article  CAS  PubMed  Google Scholar 

  9. Leney AC, Heck AJ (2017) Native mass spectrometry: what is in the name? J Am Soc Mass Spectrom 28:5–13

    Article  CAS  PubMed  Google Scholar 

  10. Marx V (2016) Proteomics: taking on protein complexes. Nat Methods 13:721–727

    Article  CAS  PubMed  Google Scholar 

  11. Boeri Erba E, Petosa C (2015) The emerging role of native mass spectrometry in characterizing the structure and dynamics of macromolecular complexes. Protein Sci 24:1176–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boeri Erba E, Barylyuk K, Yang Y, Zenobi R (2011) Quantifying protein-protein interactions within noncovalent complexes using electrospray ionization mass spectrometry. Anal Chem 83:9251–9259

    Article  CAS  PubMed  Google Scholar 

  13. Yee AW, Moulin M, Breteau N et al (2016) Impact of deuteration on the assembly kinetics of transthyretin monitored by native mass spectrometry and implications for amyloidoses. Angew Chem Int Ed Engl 55:9292–9296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. van den Heuvel RH, van Duijn E, Mazon H et al (2006) Improving the performance of a quadrupole time-of-flight instrument for macromolecular mass spectrometry. Anal Chem 78:7473–7483

    Article  CAS  PubMed  Google Scholar 

  15. Hernandez H, Robinson CV (2007) Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat Protoc 2:715–726

    Article  CAS  PubMed  Google Scholar 

  16. Kirshenbaum N, Michaelevski I, Sharon M (2010) Analyzing large protein complexes by structural mass spectrometry. J Vis Exp

    Google Scholar 

  17. Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68:1–8

    Article  CAS  PubMed  Google Scholar 

  18. Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  PubMed  Google Scholar 

  19. Benesch JL, Ruotolo BT, Simmons DA, Robinson CV (2007) Protein complexes in the gas phase: technology for structural genomics and proteomics. Chem Rev 107:3544–3567

    Article  CAS  PubMed  Google Scholar 

  20. Snijder J, Rose RJ, Veesler D et al (2013) Studying 18 MDa virus assemblies with native mass spectrometry. Angew Chem Int Ed Engl 52:4020–4023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rose RJ, Damoc E, Denisov E et al (2012) High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat Methods 9:1084–1086

    Article  CAS  PubMed  Google Scholar 

  22. van de Waterbeemd M, Snijder J, Tsvetkova IB et al (2016) Examining the heterogeneous genome content of multipartite viruses BMV and CCMV by native mass spectrometry. J Am Soc Mass Spectrom 27:1000–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang Y, Wang G, Song T et al (2017) Resolving the micro-heterogeneity and structural integrity of monoclonal antibodies by hybrid mass spectrometric approaches. MAbs 9:1–8

    Article  Google Scholar 

  24. Kondrat FD, Struwe WB, Benesch JL (2015) Native mass spectrometry: towards high-throughput structural proteomics. Methods Mol Biol 1261:349–371

    Article  CAS  PubMed  Google Scholar 

  25. Quintyn RS, Zhou M, Yan J, Wysocki VH (2015) Surface-induced dissociation mass spectra as a tool for distinguishing different structural forms of gas-phase multimeric protein complexes. Anal Chem 87:11879–11886

    Article  CAS  PubMed  Google Scholar 

  26. Harvey SR, Liu Y, Liu W et al (2017) Surface induced dissociation as a tool to study membrane protein complexes. Chem Commun (Camb) 53:3106–3109

    Article  CAS  Google Scholar 

  27. Rozen S, Tieri A, Ridner G et al (2013) Exposing the subunit diversity within protein complexes: a mass spectrometry approach. Methods 59:270–277

    Article  CAS  PubMed  Google Scholar 

  28. Signor L, Boeri Erba E (2013) Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometric analysis of intact proteins larger than 100 kDa. J Vis Exp

    Google Scholar 

  29. Laganowsky A, Reading E, Hopper JT, Robinson CV (2013) Mass spectrometry of intact membrane protein complexes. Nat Protoc 8:639–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hopper JT, Yu YT, Li D et al (2013) Detergent-free mass spectrometry of membrane protein complexes. Nat Methods 10:1206–1208

    Article  CAS  PubMed  Google Scholar 

  31. Leney AC, McMorran LM, Radford SE, Ashcroft AE (2012) Amphipathic polymers enable the study of functional membrane proteins in the gas phase. Anal Chem 84:9841–9847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sobott F, Hernandez H, McCammon MG et al (2002) A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal Chem 74:1402–1407

    Article  CAS  PubMed  Google Scholar 

  33. Snijder J, Heck AJ (2014) Analytical approaches for size and mass analysis of large protein assemblies. Annu Rev Anal Chem (Palo Alto, Calif) 7:43–64

    Article  CAS  Google Scholar 

  34. Morgner N, Robinson CV (2012) Massign: an assignment strategy for maximizing information from the mass spectra of heterogeneous protein assemblies. Anal Chem 84:2939–2948

    Article  CAS  PubMed  Google Scholar 

  35. Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537:347–355

    Article  CAS  PubMed  Google Scholar 

  36. Loo JA (2000) Electrospray ionization mass spectrometry: a technology for studying noncovalent macromolecular complexes. Int J Mass Spectrom Ion Process 200:175–186

    Article  CAS  Google Scholar 

  37. Heck AJ, Van Den Heuvel RH (2004) Investigation of intact protein complexes by mass spectrometry. Mass Spectrom Rev 23:368–389

    Article  CAS  PubMed  Google Scholar 

  38. Pagel K, Hyung SJ, Ruotolo BT, Robinson CV (2010) Alternate dissociation pathways identified in charge-reduced protein complex ions. Anal Chem 82:5363–5372

    Article  CAS  PubMed  Google Scholar 

  39. Dyachenko A, Gruber R, Shimon L et al (2013) Allosteric mechanisms can be distinguished using structural mass spectrometry. Proc Natl Acad Sci U S A 110:7235–7239

    Article  PubMed  PubMed Central  Google Scholar 

  40. King R, Bonfiglio R, Fernandez-Metzler C et al (2000) Mechanistic investigation of ionization suppression in electrospray ionization. J Am Soc Mass Spectrom 11:942–950

    Article  CAS  PubMed  Google Scholar 

  41. Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044

    Article  CAS  PubMed  Google Scholar 

  42. Kastner B, Fischer N, Golas MM et al (2008) GraFix: sample preparation for single-particle electron cryomicroscopy. Nat Methods 5:53–55

    Article  CAS  PubMed  Google Scholar 

  43. Boeri Erba E, Klein PA, Signor L (2015) Combining a NHS ester and glutaraldehyde improves crosslinking prior to MALDI MS analysis of intact protein complexes. J Mass Spectrom 50:1114–1119

    Article  CAS  PubMed  Google Scholar 

  44. Caillat C, Macheboeuf P, Wu Y et al (2015) Asymmetric ring structure of Vps4 required for ESCRT-III disassembly. Nat Commun 6:8781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Barrera NP, Isaacson SC, Zhou M et al (2009) Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions. Nat Methods 6:585–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barrera NP, Robinson CV (2011) Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes. Annu Rev Biochem 80:247–271

    Article  CAS  PubMed  Google Scholar 

  47. Ruotolo BT, Robinson CV (2006) Aspects of native proteins are retained in vacuum. Curr Opin Chem Biol 10:402–408

    Article  CAS  PubMed  Google Scholar 

  48. Painter AJ, Jaya N, Basha E et al (2008) Real-time monitoring of protein complexes reveals their quaternary organization and dynamics. Chem Biol 15:246–253

    Article  CAS  PubMed  Google Scholar 

  49. Kelly MA, Vestling MM, Fenselau C, Smith PB (1992) Electrospray analysis of proteins: a comparison of positive-ion and negative-ion mass spectra at high and low pH. Org Mass Spectrom 27:1143–1147

    Article  CAS  Google Scholar 

  50. Madler S, Barylyuk K, Boeri Erba E et al (2012) Compelling advantages of negative ion mode detection in high-mass MALDI-MS for homomeric protein complexes. J Am Soc Mass Spectrom 23:213–224

    Article  CAS  PubMed  Google Scholar 

  51. Allen SJ, Schwartz AM, Bush MF (2013) Effects of polarity on the structures and charge states of native-like proteins and protein complexes in the gas phase. Anal Chem 85:12055–12061

    Article  CAS  PubMed  Google Scholar 

  52. Chernushevich IV, Thomson BA (2004) Collisional cooling of large ions in electrospray mass spectrometry. Anal Chem 76:1754–1760

    Article  CAS  PubMed  Google Scholar 

  53. Levy ED, Boeri Erba E, Robinson CV, Teichmann SA (2008) Assembly reflects evolution of protein complexes. Nature 453:1262–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ahnert SE, Marsh JA, Hernandez H et al (2015) Principles of assembly reveal a periodic table of protein complexes. Science 350:aaa2245

    Article  CAS  PubMed  Google Scholar 

  55. McKay AR, Ruotolo BT, Ilag LL, Robinson CV (2006) Mass measurements of increased accuracy resolve heterogeneous populations of intact ribosomes. J Am Chem Soc 128:11433–11442

    Article  CAS  PubMed  Google Scholar 

  56. Keetch CA, Bromley EH, McCammon MG et al (2005) L55P transthyretin accelerates subunit exchange and leads to rapid formation of hybrid tetramers. J Biol Chem 280:41667–41674

    Article  CAS  PubMed  Google Scholar 

  57. Chevreux G, Atmanene C, Lopez P et al (2011) Monitoring the dynamics of monomer exchange using electrospray mass spectrometry: the case of the dimeric glucosamine-6-phosphate synthase. J Am Soc Mass Spectrom 22:431–439

    Article  CAS  PubMed  Google Scholar 

  58. Boeri Erba E, Ruotolo BT, Barsky D, Robinson CV (2010) Ion mobility-mass spectrometry reveals the influence of subunit packing and charge on the dissociation of multiprotein complexes. Anal Chem 82:9702–9710

    Article  CAS  PubMed  Google Scholar 

  59. Sauer PV, Timm J, Liu D et al (2017) Insights into the molecular architecture and histone H3-H4 deposition mechanism of yeast Chromatin assembly factor 1. elife 6:e23474

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank Paul Sauer, Jennifer Timm and Daniel Panne for providing the yeast CAF1 complex. We thank the members of the Viral Infection and Cancer Group at the IBS for the helpful discussion. This work used the mass spectrometry platform of the Grenoble Instruct Centre (ISBG; UMS 3518 CNRS-CEA-UJF-EMBL) with support from FRISBI (ANR-10-INSB-05-02) and GRAL (ANR-10-LABX-49-01) within the Grenoble Partnership for Structural Biology (PSB). It was financially supported by the French Infrastructure for Integrated Structural Biology Initiative and by the French National Centre for Scientific Research (CNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Boeri Erba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boeri Erba, E., Signor, L., Oliva, M.F., Hans, F., Petosa, C. (2018). Characterizing Intact Macromolecular Complexes Using Native Mass Spectrometry. In: Marsh, J. (eds) Protein Complex Assembly. Methods in Molecular Biology, vol 1764. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7759-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7759-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7758-1

  • Online ISBN: 978-1-4939-7759-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics