Skip to main content

Reconstitution of Isotopically Labeled Ribosomal Protein L29 in the 50S Large Ribosomal Subunit for Solution-State and Solid-State NMR

  • Protocol
  • First Online:
Protein Complex Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1764))

Abstract

Solid-state nuclear magnetic resonance (NMR) has recently emerged as a method of choice to study structural and dynamic properties of large biomolecular complexes at atomic resolution. Indeed, recent technological and methodological developments have enabled the study of ever more complex systems in the solid-state. However, to explore multicomponent protein complexes by NMR, specific labeling schemes need to be developed that are dependent on the biological question to be answered. We show here how to reconstitute an isotopically labeled protein within the unlabeled 50S or 70S ribosomal subunit. In particular, we focus on the 63-residue ribosomal protein L29 (~7 kDa), which is located at the exit of the tunnel of the large 50S ribosomal subunit (~1.5 MDa). The aim of this work is the preparation of a suitable sample to investigate allosteric conformational changes in a ribosomal protein that are induced by the nascent polypeptide chain and that trigger the interaction with different chaperones (e.g., trigger factor or SRP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng YF (2015) Single-particle Cryo-EM at crystallographic resolution. Cell 161:450–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Frank J (2017) Advances in the field of single-particle cryo-electron microscopy over the last decade. Nat Protoc 12:209–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Orlov I, Myasnikov AG, Andronov L et al (2017) The integrative role of cryo electron microscopy in molecular and cellular structural biology. Biol Cell 109:81–93

    Article  CAS  PubMed  Google Scholar 

  4. Callaway E (2015) The revolution will not be crystallized. Nature 525:172–174

    Article  CAS  PubMed  Google Scholar 

  5. Mainz A, Jehle S, van Rossum BJ et al (2009) Large protein complexes with extreme rotational correlation times investigated in solution by magic-angle-spinning NMR spectroscopy. J Am Chem Soc 131:15968–15969

    Article  CAS  PubMed  Google Scholar 

  6. Mainz A, Bardiaux B, Kuppler F et al (2012) Structural and mechanistic implications of metal-binding in the small heat-shock protein αB-crystallin. J Biol Chem 287:1128–1138

    Article  CAS  PubMed  Google Scholar 

  7. Mainz A, Religa T, Sprangers R et al (2013) NMR spectroscopy of soluble protein complexes at one mega-Dalton and beyond. Angew Chem Int Ed Engl 52:8746–8751

    Article  CAS  PubMed  Google Scholar 

  8. Mainz A, Peschek J, Stavropoulou M et al (2015) The chaperone αB-crystallin deploys different interfaces to capture an amorphous and an amyloid client. Nat Struct Mol Biol 22:898–905

    Article  CAS  PubMed  Google Scholar 

  9. Barbet-Massin E, Huang C-T, Daebel V et al (2015) Site-specific solid-state NMR studies of “trigger factor” in complex with the large ribosomal subunit 50S. Angew Chem Int Ed Engl 54:4367–4369

    Article  CAS  PubMed  Google Scholar 

  10. Sarkar R, Mainz A, Busi B et al (2016) Immobilization of soluble protein complexes in MAS solid-state NMR: sedimentation versus viscosity. Solid State Nucl Magn Reson 76-77:7–14

    Article  CAS  PubMed  Google Scholar 

  11. Quinn CM, Polenova T (2017) Structural biology of supramolecular assemblies by magic-angle spinning NMR spectroscopy. Q Rev Biophys 50:1–44

    Article  Google Scholar 

  12. Petkova AT, Yau W-M, Tycko R (2006) Experimental constraints on quaternary structure in Alzheimer’s β-amyloid fibrils. Biochemistry 45:498–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wasmer C, Lange A, Van Melckebeke H et al (2008) Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    Article  CAS  PubMed  Google Scholar 

  14. Tuttle MD, Comellas G, Nieuwkoop AJ et al (2016) Solid-state NMR structure of a pathogenic fibril of full-length human alpha-synuclein. Nat Struct Mol Biol 23:409–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Colvin MT, Silvers R, Ni QZ et al (2016) Atomic resolution structure of monomorphic a beta(42) amyloid fibrils. J Am Chem Soc 138:9663–9674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wälti MA, Ravotti F, Arai H et al (2016) Atomic-resolution structure of a disease-relevant Aβ(1-42) amyloid fibril. Proc Natl Acad Sci U S A 113:E4976–E4984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lange A, Giller K, Hornig S et al (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440:959–962

    Article  CAS  PubMed  Google Scholar 

  18. Shahid SA, Bardiaux B, Franks WT et al (2012) Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals. Nat Methods 9:1212–U1119

    Article  CAS  PubMed  Google Scholar 

  19. Lu MM, Hou GJ, Zhang HL et al (2015) Dynamic allostery governs cyclophilin A-HIV capsid interplay. Proc Natl Acad Sci U S A 112:14617–14622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Andreas LB, Jaudzems K, Stanek J et al (2016) Structure of fully protonated proteins by proton-detected magic-angle spinning NMR. Proc Natl Acad Sci U S A 113:9187–9192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yan S, Guo CM, Hou GJ et al (2015) Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci U S A 112:14611–14616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yehl J, Kudryashova E, Reisler E et al (2017) Structural analysis of human Cofilin 2/filamentous actin assemblies: atomic-resolution insights from magic angle spinning NMR spectroscopy. Sci Rep 7:44506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grutsch S, Bruschweiler S, Tollinger M (2016) NMR methods to study dynamic allostery. PLoS Comput Biol 12:e1004620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Olsson S, Strotz D, Vogeli B et al (2016) The dynamic basis for signal propagation in human Pin1-WW. Structure 24:1464–1475

    Article  CAS  PubMed  Google Scholar 

  25. Chevelkov V, Fink U, Reif B (2009) Quantitative analysis of backbone motion in proteins using MAS solid-state NMR spectroscopy. J Biomol NMR 45:197–206

    Article  CAS  PubMed  Google Scholar 

  26. Schanda P, Meier BH, Ernst M (2010) Quantitative analysis of protein backbone dynamics in microcrystalline ubiquitin by solid-state NMR spectroscopy. J Am Chem Soc 132:15957–15967

    Article  CAS  PubMed  Google Scholar 

  27. Kramer G, Boehringer D, Ban N et al (2009) The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol 16:589–597

    Article  CAS  PubMed  Google Scholar 

  28. Kramer G, Rauch T, Rist W et al (2002) L23 protein functions as a chaperone docking site on the ribosome. Nature 419:171–174

    Article  CAS  PubMed  Google Scholar 

  29. Bischoff L, Wickles S, Berninghausen O et al (2014) Visualization of a polytopic membrane protein during SecY-mediated membrane insertion. Nat Commun 5:4103

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We acknowledge support from the Helmholtz-Gemeinschaft and the Deutsche Forschungsgemeinschaft (Grants Re1435 and SFB-1035, project B07). In addition, we are grateful to the Center for Integrated Protein Science Munich (CIPS-M) for the financial support. We acknowledge support from EMBO (Fellowship ALTF 52-2014) and from the European Commission (EMBOCOFUND2012, GA-2012-600394) and Marie Curie Actions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Reif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barbet-Massin, E., van der Sluis, E., Musial, J., Beckmann, R., Reif, B. (2018). Reconstitution of Isotopically Labeled Ribosomal Protein L29 in the 50S Large Ribosomal Subunit for Solution-State and Solid-State NMR. In: Marsh, J. (eds) Protein Complex Assembly. Methods in Molecular Biology, vol 1764. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7759-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7759-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7758-1

  • Online ISBN: 978-1-4939-7759-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics