Skip to main content

Time-Resolved Cryo-electron Microscopy Using a Microfluidic Chip

  • Protocol
  • First Online:
Protein Complex Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1764))

Abstract

With the advent of direct electron detectors, cryo-EM has become a popular choice for molecular structure determination. Among its advantages over X-ray crystallography are (1) no need for crystals, (2) much smaller sample volumes, and (3) the ability to determine multiple structures or conformations coexisting in one sample. In principle, kinetic experiments can be done using standard cryo-EM, but mixing and freezing grids require several seconds. However, many biological processes are much faster than that time scale, and the ensuing short-lived states of the molecules cannot be captured. Here, we lay out a detailed protocol for how to capture such intermediate states on the millisecond time scale with time-resolved cryo-EM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischer N, Konevega AL, Wintermeyer W, Rodnina MV, Stark H (2010) Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466(7304):329–333. https://doi.org/10.1038/nature09206

    Article  PubMed  CAS  Google Scholar 

  2. Chen B, Kaledhonkar S, Sun M, Shen BX, Lu ZH, Barnard D, Lu TM, Gonzalez RL, Frank J (2015) Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryogenic electron microscopy. Structure 23(6):1097–1105. https://doi.org/10.1016/j.str.2015.04.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Feng X, Fu Z, Kaledhonkar S, Jia Y, Shah B, Jin A, Liu Z, Sun M, Chen B, Grassucci RA, Ren Y, Jiang H, Frank J, Lin Q (2017) A fast and effective microfluidic spraying-plunging method for high-resolution single-particle cryo-EM. Structure 25(4):663–670 e663. https://doi.org/10.1016/j.str.2017.02.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Fu Z, Kaledhonkar S, Borg A, Sun M, Chen B, Grassucci RA, Ehrenberg M, Frank J (2016) Key intermediates in ribosome recycling visualized by time-resolved cryoelectron microscopy. Structure 24(12):2092–2101. https://doi.org/10.1016/j.str.2016.09.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lu ZH, Shaikh TR, Barnard D, Meng X, Mohamed H, Yassin A, Mannella CA, Agrawal RK, Lu TM, Wagenknecht T (2009) Monolithic microfluidic mixing-spraying devices for time-resolved cryo-electron microscopy. J Struct Biol 168(3):388–395. https://doi.org/10.1016/j.jsb.2009.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shaikh TR, Yassin AS, Lu ZH, Barnard D, Meng X, Lu TM, Wagenknecht T, Agrawal RK (2014) Initial bridges between two ribosomal subunits are formed within 9.4 milliseconds, as studied by time-resolved cryo-EM. Proc Natl Acad Sci U S A 111(27):9822–9827. https://doi.org/10.1073/pnas.1406744111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. White HD, Thirumurugan K, Walker ML, Trinick J (2003) A second generation apparatus for time-resolved electron cryo-microscopy using stepper motors and electrospray. J Struct Biol 144(1–2):246–252. https://doi.org/10.1016/j.jsb.2003.09.027

    Article  PubMed  CAS  Google Scholar 

  8. White HD, Walker ML, Trinick J (1998) A computer-controlled spraying-freezing apparatus for millisecond time-resolution electron cryomicroscopy. J Struct Biol 121(3):306–313. https://doi.org/10.1006/jsbi.1998.3968

    Article  PubMed  CAS  Google Scholar 

  9. Tivol WF, Briegel A, Jensen GJ (2008) An improved cryogen for plunge freezing. Microsc Microanal 14(5):375–379. https://doi.org/10.1017/s1431927608080781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Suloway C, Pulokas J, Fellmann D, Cheng A, Guerra F, Quispe J, Stagg S, Potter CS, Carragher B (2005) Automated molecular microscopy: the new Leginon system. J Struct Biol 151(1):41–60. https://doi.org/10.1016/j.jsb.2005.03.010

    Article  CAS  PubMed  Google Scholar 

  11. Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng YF, Agard DA (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14(4):331–332. https://doi.org/10.1038/nmeth.4193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Grant T, Grigorieff N (2015) Measuring the optimal exposure for single particle cryo-EM using a 2.6 angstrom reconstruction of rotavirus VP6. elife 4:e06980. https://doi.org/10.7554/eLife.06980

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rohou A, Grigorieff N (2015) CTFFIND4: fast and accurate defocus estimation from electron micrographs. J Struct Biol 192(2):216–221. https://doi.org/10.1016/j.jsb.2015.08.008

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang K (2016) Gctf: real-time CTF determination and correction. J Struct Biol 193(1):1–12. https://doi.org/10.1016/j.jsb.2015.11.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Scheres SHW (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180(3):519–530. https://doi.org/10.1016/j.jsb.2012.09.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by the HHMI and NIH R01 GM29169 and GM55440 (to J.F.) and NIH AR40964 and NIH Fogarty Senior International Fellowship (to H.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Frank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kaledhonkar, S., Fu, Z., White, H., Frank, J. (2018). Time-Resolved Cryo-electron Microscopy Using a Microfluidic Chip. In: Marsh, J. (eds) Protein Complex Assembly. Methods in Molecular Biology, vol 1764. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7759-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7759-8_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7758-1

  • Online ISBN: 978-1-4939-7759-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics