Skip to main content

Modeling the Structure of Helical Assemblies with Experimental Constraints in Rosetta

  • Protocol
  • First Online:
Book cover Protein Complex Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1764))

Abstract

Determining high-resolution structures of proteins with helical symmetry can be challenging due to limitations in experimental data. In such instances, structure-based protein simulations driven by experimental data can provide a valuable approach for building models of helical assemblies. This chapter describes how the Rosetta macromolecular package can be used to model homomeric protein assemblies with helical symmetry in a range of modeling scenarios including energy refinement, symmetrical docking, comparative modeling, and de novo structure prediction. Data-guided structure modeling of helical assemblies with experimental information from electron density, X-ray fiber diffraction, solid-state NMR, and chemical cross-linking mass spectrometry is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodsell DS, Olson AJ (2000) Structural symmetry and protein function. Annu Rev Biophys Biomol Struct 29:105–153

    Article  CAS  PubMed  Google Scholar 

  2. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, Kaufman K, Renfrew PD, Smith CA, Sheffler W, Davis IW, Cooper S, Treuille A, Mandell DJ, Richter F, Ban YE, Fleishman SJ, Corn JE, Kim DE, Lyskov S, Berrondo M, Mentzer S, Popovic Z, Havranek JJ, Karanicolas J, Das R, Meiler J, Kortemme T, Gray JJ, Kuhlman B, Baker D, Bradley P (2011) ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574. https://doi.org/10.1016/B978-0-12-381270-4.00019-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. DiMaio F, Leaver-Fay A, Bradley P, Baker D, Andre I (2011) Modeling symmetric macromolecular structures in Rosetta3. PLoS One 6(6):e20450. https://doi.org/10.1371/journal.pone.0020450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Klug A, Crick FHC, Wyckoff HW (1958) Diffraction by helical structures. Acta Crystallogr 11(3):199–213. https://doi.org/10.1107/S0365110x58000517

    Article  CAS  Google Scholar 

  5. Kendall A, McDonald M, Stubbs G (2007) Precise determination of the helical repeat of tobacco mosaic virus. Virology 369(1):226–227. https://doi.org/10.1016/j.virol.2007.08.013

    Article  PubMed  CAS  Google Scholar 

  6. Andre I, Bradley P, Wang C, Baker D (2007) Prediction of the structure of symmetrical protein assemblies. Proc Natl Acad Sci U S A 104(45):17656–17661

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tyka MD, Keedy DA, Andre I, Dimaio F, Song Y, Richardson DC, Richardson JS, Baker D (2011) Alternate states of proteins revealed by detailed energy landscape mapping. J Mol Biol 405(2):607–618. https://doi.org/10.1016/j.jmb.2010.11.008

    Article  PubMed  CAS  Google Scholar 

  8. Fleishman SJ, Leaver-Fay A, Corn JE, Strauch EM, Khare SD, Koga N, Ashworth J, Murphy P, Richter F, Lemmon G, Meiler J, Baker D (2011) RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. PLoS One 6(6). https://doi.org/10.1371/journal.pone.0020161. doi: ARTN e20161

  9. Song Y, DiMaio F, Wang RY, Kim D, Miles C, Brunette T, Thompson J, Baker D (2013) High-resolution comparative modeling with RosettaCM. Structure 21(10):1735–1742. https://doi.org/10.1016/j.str.2013.08.005

    Article  PubMed  CAS  Google Scholar 

  10. Das R, Andre I, Shen Y, Wu Y, Lemak A, Bansal S, Arrowsmith CH, Szyperski T, Baker D (2009) Simultaneous prediction of protein folding and docking at high resolution. Proc Natl Acad Sci U S A 106(45):18978–18983. https://doi.org/10.1073/pnas.0904407106

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ramisch S, Lizatovic R, Andre I (2015) Exploring alternate states and oligomerization preferences of coiled-coils by de novo structure modeling. Proteins 83(2):235–247. https://doi.org/10.1002/prot.24729

    Article  PubMed  CAS  Google Scholar 

  12. Sachse c (2015) Single-particle based helical reconstruction—how to make the most of real and Fourier space. AIMS Biophys 2(2):219–244

    Article  Google Scholar 

  13. Yan S, Suiter CL, Hou G, Zhang H, Polenova T (2013) Probing structure and dynamics of protein assemblies by magic angle spinning NMR spectroscopy. Acc Chem Res 46(9):2047–2058. https://doi.org/10.1021/ar300309s

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chandrasekaran R, Stubbs G (2012) In: Arnold E, Himmel D, Rossmann MG (eds) International tables for crystallography Vol. F: crystallography of biological macromolecules, 2nd edn. Wiley, Chichester, p 583–592

    Chapter  Google Scholar 

  15. DiMaio F, Chiu W (2016) Tools for model building and optimization into near-atomic resolution electron Cryo-microscopy density maps. In: Resolution revolution: recent advances in cryoem, vol 579. Elsevier, Amsterdam, pp 255–276. https://doi.org/10.1016/bs.mie.2016.06.003

    Chapter  Google Scholar 

  16. Potrzebowski W, Andre I (2015) Automated determination of fibrillar structures by simultaneous model building and fiber diffraction refinement. Nat Methods 12(7):679–684. https://doi.org/10.1038/nmeth.3399

    Article  PubMed  CAS  Google Scholar 

  17. Lipsitz RS, Tjandra N (2003) N-15 chemical shift anisotropy in protein structure refinement and comparison with NH residual dipolar couplings. J Magn Reson 164(1):171–176. https://doi.org/10.1016/S1090-7807(03)00176-9

    Article  PubMed  CAS  Google Scholar 

  18. Morag O, Sgourakis NG, Baker D, Goldbourt A (2015) The NMR-Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope. Proc Natl Acad Sci U S A 112(4):971–976. https://doi.org/10.1073/pnas.1415393112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Boelt SG, Norn C, Rasmussen MI, Andre I, Ciplys E, Slibinskas R, Houen G, Hojrup P (2016) Mapping the Ca2+ induced structural change in calreticulin. J Proteome 142:138–148. https://doi.org/10.1016/j.jprot.2016.05.015

    Article  CAS  Google Scholar 

  20. Kaltofen S, Li C, Huang PS, Serpell LC, Barth A, Andre I (2015) Computational de novo design of a self-assembling peptide with predefined structure. J Mol Biol 427(2):550–562. https://doi.org/10.1016/j.jmb.2014.12.002

    Article  PubMed  CAS  Google Scholar 

  21. Tewary SK, Oda T, Kendall A, Bian W, Stubbs G, Wong SM, Swaminathan K (2011) Structure of hibiscus latent Singapore virus by fiber diffraction: a nonconserved his122 contributes to coat protein stability. J Mol Biol 406(3):516–526. https://doi.org/10.1016/j.jmb.2010.12.032

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingemar André .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

André, I. (2018). Modeling the Structure of Helical Assemblies with Experimental Constraints in Rosetta. In: Marsh, J. (eds) Protein Complex Assembly. Methods in Molecular Biology, vol 1764. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7759-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7759-8_30

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7758-1

  • Online ISBN: 978-1-4939-7759-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics