Skip to main content

Modeling Structure and Dynamics of Protein Complexes with SAXS Profiles

  • Protocol
  • First Online:
Protein Complex Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1764))

Abstract

Small-angle X-ray scattering (SAXS) is an increasingly common and useful technique for structural characterization of molecules in solution. A SAXS experiment determines the scattering intensity of a molecule as a function of spatial frequency, termed SAXS profile. SAXS profiles can be utilized in a variety of molecular modeling applications, such as comparing solution and crystal structures, structural characterization of flexible proteins, assembly of multi-protein complexes, and modeling of missing regions in the high-resolution structure. Here, we describe protocols for modeling atomic structures based on SAXS profiles. The first protocol is for comparing solution and crystal structures including modeling of missing regions and determination of the oligomeric state. The second protocol performs multi-state modeling by finding a set of conformations and their weights that fit the SAXS profile starting from a single-input structure. The third protocol is for protein-protein docking based on the SAXS profile of the complex. We describe the underlying software, followed by demonstrating their application on interleukin 33 (IL33) with its primary receptor ST2 and DNA ligase IV-XRCC4 complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hura GL, Menon AL, Hammel M, Rambo RP, Poole FL 2nd, Tsutakawa SE, Jenney FE Jr, Classen S, Frankel KA, Hopkins RC, Yang SJ, Scott JW, Dillard BD, Adams MW, Tainer JA (2009) Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat Methods 6(8):606–612. https://doi.org/10.1038/nmeth.1353. nmeth.1353 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Hura GL, Budworth H, Dyer KN, Rambo RP, Hammel M, McMurray CT, Tainer JA (2013) Comprehensive macromolecular conformations mapped by quantitative SAXS analyses. Nat Methods 10(6):453–454. https://doi.org/10.1038/nmeth.2453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Dyer KN, Hammel M, Rambo RP, Tsutakawa SE, Rodic I, Classen S, Tainer JA, Hura GL (2014) High-throughput SAXS for the characterization of biomolecules in solution: a practical approach. Methods Mol Biol 1091:245–258. https://doi.org/10.1007/978-1-62703-691-7_18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Putnam CD, Hammel M, Hura GL, Tainer JA (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40(3):191–285. https://doi.org/10.1017/S0033583507004635. S0033583507004635 [pii]

    Article  PubMed  CAS  Google Scholar 

  5. Rambo RP, Tainer JA (2013) Super-resolution in solution x-ray scattering and its applications to structural systems biology. Annu Rev Biophys 42:415–441. https://doi.org/10.1146/annurev-biophys-083012-130301

    Article  PubMed  CAS  Google Scholar 

  6. Chacon P, Moran F, Diaz JF, Pantos E, Andreu JM (1998) Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm. Biophys J 74(6):2760–2775. https://doi.org/10.1016/S0006-3495(98)77984-6. S0006-3495(98)77984-6 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76(6):2879–2886. https://doi.org/10.1016/S0006-3495(99)77443-6. S0006-3495(99)77443-6 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Svergun DI, Petoukhov MV, Koch MH (2001) Determination of domain structure of proteins from X-ray solution scattering. Biophys J 80(6):2946–2953. https://doi.org/10.1016/S0006-3495(01)76260-1. S0006-3495(01)76260-1 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Petoukhov MV, Svergun DI (2005) Global rigid body modeling of macromolecular complexes against small-angle scattering data. Biophys J 89(2):1237–1250. https://doi.org/10.1529/biophysj.105.064154. S0006-3495(05)72771-5 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815. https://doi.org/10.1006/jmbi.1993.1626. S0022-2836(83)71626-8 [pii]

    Article  PubMed  CAS  Google Scholar 

  12. Förster F, Webb B, Krukenberg KA, Tsuruta H, Agard DA, Sali A (2008) Integration of small-angle X-ray scattering data into structural modeling of proteins and their assemblies. J Mol Biol 382(4):1089–1106. https://doi.org/10.1016/j.jmb.2008.07.074. S0022-2836(08)00943-1 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Schneidman-Duhovny D, Hammel M, Sali A (2010) FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res 38(Suppl):W540–W544. https://doi.org/10.1093/nar/gkq461. gkq461 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Schneidman-Duhovny D, Hammel M, Sali A (2011) Macromolecular docking restrained by a small angle X-ray scattering profile. J Struct Biol 173(3):461–471. https://doi.org/10.1016/j.jsb.2010.09.023. S1047-8477(10)00292-3 [pii]

    Article  PubMed  CAS  Google Scholar 

  15. Schneidman-Duhovny D, Rossi A, Avila-Sakar A, Kim SJ, Velazquez-Muriel J, Strop P, Liang H, Krukenberg KA, Liao M, Kim HM, Sobhanifar S, Dotsch V, Rajpal A, Pons J, Agard DA, Cheng Y, Sali A (2012) A method for integrative structure determination of protein-protein complexes. Bioinformatics 28(24):3282–3289. https://doi.org/10.1093/bioinformatics/bts628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Schneidman-Duhovny D, Hammel M, Tainer JA, Sali A (2013) Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys J 105(4):962–974. https://doi.org/10.1016/j.bpj.2013.07.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Schneidman-Duhovny D, Hammel M, Tainer JA, Sali A (2016) FoXS, FoXSDock and MultiFoXS: single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res 44(W1):W424–W429. https://doi.org/10.1093/nar/gkw389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hammel M (2012) Validation of macromolecular flexibility in solution by small-angle X-ray scattering (SAXS). Eur Biophys J 41(10):789–799. https://doi.org/10.1007/s00249-012-0820-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Schneidman-Duhovny D, Kim SJ, Sali A (2012) Integrative structural modeling with small angle X-ray scattering profiles. BMC Struct Biol 12(1):17. https://doi.org/10.1186/1472-6807-12-17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Rambo RP, Tainer JA (2011) Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law. Biopolymers 95(8):559–571. https://doi.org/10.1002/bip.21638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG, Gajda M, Gorba C, Mertens HDT, Konarev PV, Svergun DI (2012) New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Crystallogr 45(2):342–350. https://doi.org/10.1107/S0021889812007662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Pons C, D'Abramo M, Svergun DI, Orozco M, Bernado P, Fernandez-Recio J (2010) Structural characterization of protein-protein complexes by integrating computational docking with small-angle scattering data. J Mol Biol 403(2):217–230. https://doi.org/10.1016/j.jmb.2010.08.029. S0022-2836(10)00891-0 [pii]

    Article  PubMed  CAS  Google Scholar 

  23. Jimenez-Garcia B, Pons C, Svergun DI, Bernado P, Fernandez-Recio J (2015) pyDockSAXS: protein-protein complex structure by SAXS and computational docking. Nucleic Acids Res 43(W1):W356–W361. https://doi.org/10.1093/nar/gkv368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Liu X, Hammel M, He Y, Tainer JA, Jeng US, Zhang L, Wang S, Wang X (2013) Structural insights into the interaction of IL-33 with its receptors. Proc Natl Acad Sci U S A 110(37):14918–14923. https://doi.org/10.1073/pnas.1308651110

    Article  PubMed  PubMed Central  Google Scholar 

  25. Debye P (1915) Zerstreuung von Röntgenstrahlen. Ann Phys 351(6):809–823

    Article  Google Scholar 

  26. Svergun D, Barberato C, Koch MHJ (1995) CRYSOL–a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28(6):768–773

    Article  CAS  Google Scholar 

  27. Fraser RDB, MacRae TP, Suzuki E (1978) An improved method for calculating the contribution of solvent to the X-ray diffraction pattern of biological molecules. J Appl Crystallogr 11(6):693–694

    Article  CAS  Google Scholar 

  28. Connolly ML (1983) Solvent-accessible surfaces of proteins and nucleic acids. Science 221(4612):709–713

    Article  CAS  PubMed  Google Scholar 

  29. Rambo RP, Tainer JA (2013) Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496(7446):477–481. https://doi.org/10.1038/nature12070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. LaValle SM, Kuffner JJ (2001) Rapidly-exploring random trees: progress and prospects. In: Algorithmic and computational robotics: New Directions, pp. 293–308

    Google Scholar 

  31. Amato NM, Song G (2002) Using motion planning to study protein folding pathways. J Comput Biol 9(2):149–168

    Article  CAS  PubMed  Google Scholar 

  32. Cortes J, Simeon T, Ruiz de Angulo V, Guieysse D, Remaud-Simeon M, Tran V (2005) A path planning approach for computing large-amplitude motions of flexible molecules. Bioinformatics 21(Suppl 1):i116–i125. https://doi.org/10.1093/bioinformatics/bti1017

    Article  PubMed  CAS  Google Scholar 

  33. Raveh B, London N, Schueler-Furman O (2010) Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 78(9):2029–2040. https://doi.org/10.1002/prot.22716

    Article  PubMed  CAS  Google Scholar 

  34. Suhre K, Sanejouand YH (2004) On the potential of normal-mode analysis for solving difficult molecular-replacement problems. Acta Crystallogr D Biol Crystallogr 60:796

    Article  CAS  PubMed  Google Scholar 

  35. Ma JP (2005) Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13:373

    Article  CAS  PubMed  Google Scholar 

  36. Fonseca R, Pachov DV, Bernauer J, van den Bedem H (2014) Characterizing RNA ensembles from NMR data with kinematic models. Nucleic Acids Res 42(15):9562–9572. https://doi.org/10.1093/nar/gku707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Fonseca R, van den Bedem H, Bernauer J (2015) KGSrna: efficient 3D kinematics-based sampling for nucleic acids. In: Przytycka TM (ed) Research in computational molecular biology: 19th annual international conference, RECOMB 2015, Warsaw, Poland, April 12–15, 2015, Proceedings. Springer International Publishing, Cham, pp. 80–95. doi:https://doi.org/10.1007/978-3-319-16706-0_11

    Chapter  Google Scholar 

  38. Emekli U, Schneidman-Duhovny D, Wolfson HJ, Nussinov R, Haliloglu T (2008) HingeProt: automated prediction of hinges in protein structures. Proteins 70(4):1219–1227. https://doi.org/10.1002/prot.21613

    Article  PubMed  CAS  Google Scholar 

  39. Bernado P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI (2007) Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc 129(17):5656–5664. https://doi.org/10.1021/ja069124n

    Article  PubMed  CAS  Google Scholar 

  40. Carter L, Kim SJ, Schneidman-Duhovny D, Stohr J, Poncet-Montange G, Weiss TM, Tsuruta H, Prusiner SB, Sali A (2015) Prion protein-antibody complexes characterized by chromatography-coupled small-angle X-ray scattering. Biophys J 109(4):793–805. https://doi.org/10.1016/j.bpj.2015.06.065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614. https://doi.org/10.1002/jcc.21287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Williams GJ, Hammel M, Radhakrishnan SK, Ramsden D, Lees-Miller SP, Tainer JA (2014) Structural insights into NHEJ: building up an integrated picture of the dynamic DSB repair super complex, one component and interaction at a time. DNA Repair (Amst) 17:110–120. https://doi.org/10.1016/j.dnarep.2014.02.009

    Article  CAS  Google Scholar 

  43. Wu PY, Frit P, Meesala S, Dauvillier S, Modesti M, Andres SN, Huang Y, Sekiguchi J, Calsou P, Salles B, Junop MS (2009) Structural and functional interaction between the human DNA repair proteins DNA ligase IV and XRCC4. Mol Cell Biol 29(11):3163–3172. https://doi.org/10.1128/MCB.01895-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Pascal JM, O'Brien PJ, Tomkinson AE, Ellenberger T (2004) Human DNA ligase I completely encircles and partially unwinds nicked DNA. Nature 432(7016):473–478. https://doi.org/10.1038/nature03082

    Article  PubMed  CAS  Google Scholar 

  45. Cotner-Gohara E, Kim IK, Hammel M, Tainer JA, Tomkinson AE, Ellenberger T (2010) Human DNA ligase III recognizes DNA ends by dynamic switching between two DNA-bound states. Biochemistry 49(29):6165–6176. https://doi.org/10.1021/bi100503w

    Article  PubMed  CAS  Google Scholar 

  46. Duhovny D, Nussinov R, Wolfson HJ (2002) Efficient unbound docking of rigid molecules. In: Guigó R, Gusfield D (eds) Second International Workshop, WABI 2002, Rome, Italy. Lecture notes in computer science. Springer Berlin, Heidelberg, pp. 185–200. doi:https://doi.org/10.1007/3-540-45784-4

    Book  Google Scholar 

  47. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33(Web Server issue):W363–W367. https://doi.org/10.1093/nar/gki481. 33/suppl_2/W363 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Dong GQ, Fan H, Schneidman-Duhovny D, Webb B, Sali A (2013) Optimized atomic statistical potentials: assessment of protein interfaces and loops. Bioinformatics 29(24):3158–3166. https://doi.org/10.1093/bioinformatics/btt560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Andrej Sali, John Tainer, Ben Webb, David Agard, Friedrich Foerster, Seung Jong Kim, Hiro Tsuruta, Tsutomu Matsui, Lester Carter, Greg Hura, Riccardo Pellarin, Barak Raveh, Patrick Weinkam, and many others who contributed to our SAXS-based modeling efforts over the years. SAXS at the Advanced Light Source SIBYLS beamline in supported by National Institutes of Health (NIH) grants CA92584, DOE BER Integrated Diffraction Analysis Technologies (IDAT) program and NIGMS grant P30 GM124169-01, ALS-ENABLE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dina Schneidman-Duhovny or Michal Hammel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schneidman-Duhovny, D., Hammel, M. (2018). Modeling Structure and Dynamics of Protein Complexes with SAXS Profiles. In: Marsh, J. (eds) Protein Complex Assembly. Methods in Molecular Biology, vol 1764. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7759-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7759-8_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7758-1

  • Online ISBN: 978-1-4939-7759-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics