Advertisement

Protein-Protein Docking Using Evolutionary Information

  • Aravindan Arun Nadaradjane
  • Raphael Guerois
  • Jessica Andreani
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1764)

Abstract

The structural modeling of protein complexes by docking simulations has been attracting increasing interest with the rise of proteomics and of the number of experimentally identified binary interactions. Structures of unbound partners, either modeled or experimentally determined, can be used as input to sample as extensively as possible all putative binding modes and single out the most plausible ones. At the scoring step, evolutionary information contained in the joint multiple sequence alignments of both partners can provide key insights to recognize correct interfaces. Here, we describe a computational protocol based on the InterEvDock web server to exploit coevolution constraints in protein-protein docking methods. We provide methodology guidelines to prepare the input protein structures and generate improved alignments. We also explain how to extract and use the information returned by the server through the analysis of two representative examples.

Key words

Protein docking Protein interactions Protein structure Protein scoring Evolutionary information Coevolution Bioinformatics InterEvDock InterEvolAlign Complex interface 

References

  1. 1.
    Aloy P, Russell RB (2006) Structural systems biology: modelling protein interactions. Nat Rev Mol Cell Biol 7(3):188–197. https://doi.org/10.1038/nrm1859 CrossRefPubMedGoogle Scholar
  2. 2.
    Vajda S, Kozakov D (2009) Convergence and combination of methods in protein-protein docking. Curr Opin Struct Biol 19(2):164–170. https://doi.org/10.1016/j.sbi.2009.02.008 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dreze M, Charloteaux B, Milstein S, Vidalain PO, Yildirim MA, Zhong Q, Svrzikapa N, Romero V, Laloux G, Brasseur R, Vandenhaute J, Boxem M, Cusick ME, Hill DE, Vidal M (2009) ‘Edgetic’ perturbation of a C. Elegans BCL2 ortholog. Nat Methods 6(11):843–849. https://doi.org/10.1038/nmeth.1394 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wang Y, Sahni N, Vidal M (2015) Global edgetic rewiring in cancer networks. Cell Syst 1(4):251–253. https://doi.org/10.1016/j.cels.2015.10.006 CrossRefPubMedGoogle Scholar
  5. 5.
    Kadota Y, Amigues B, Ducassou L, Madaoui H, Ochsenbein F, Guerois R, Shirasu K (2008) Structural and functional analysis of SGT1-HSP90 core complex required for innate immunity in plants. EMBO Rep 9(12):1209–1215. https://doi.org/10.1038/embor.2008.185 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Janin J, Henrick K, Moult J, Eyck LT, Sternberg MJ, Vajda S, Vakser I, Wodak SJ, Critical Assessment of PI (2003) CAPRI: a critical assessment of predicted interactions. Proteins 52(1):2–9. https://doi.org/10.1002/prot.10381 CrossRefPubMedGoogle Scholar
  7. 7.
    Wodak SJ, Janin J (2017) Modeling protein assemblies: critical assessment of predicted interactions (CAPRI) 15 years hence.: 6TH CAPRI evaluation meeting April 17-19 Tel-Aviv, Israel. Proteins 85(3):357–358. https://doi.org/10.1002/prot.25233 CrossRefPubMedGoogle Scholar
  8. 8.
    Lensink MF, Velankar S, Wodak SJ (2017) Modeling protein-protein and protein-peptide complexes: CAPRI 6th edition. Proteins 85(3):359–377. https://doi.org/10.1002/prot.25215 CrossRefPubMedGoogle Scholar
  9. 9.
    Huang SY (2014) Search strategies and evaluation in protein-protein docking: principles, advances and challenges. Drug Discov Today 19(8):1081–1096. https://doi.org/10.1016/j.drudis.2014.02.005 CrossRefPubMedGoogle Scholar
  10. 10.
    Yu J, Vavrusa M, Andreani J, Rey J, Tuffery P, Guerois R (2016) InterEvDock: a docking server to predict the structure of protein-protein interactions using evolutionary information. Nucleic Acids Res 44(W1):W542–W549. https://doi.org/10.1093/nar/gkw340 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Aloy P, Ceulemans H, Stark A, Russell RB (2003) The relationship between sequence and interaction divergence in proteins. J Mol Biol 332(5):989–998CrossRefPubMedGoogle Scholar
  12. 12.
    Levy ED, Boeri Erba E, Robinson CV, Teichmann SA (2008) Assembly reflects evolution of protein complexes. Nature 453(7199):1262–1265. https://doi.org/10.1038/nature06942 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Faure G, Andreani J, Guerois R (2012) InterEvol database: exploring the structure and evolution of protein complex interfaces. Nucleic Acids Res 40(Database issue):D847–D856. https://doi.org/10.1093/nar/gkr845 CrossRefPubMedGoogle Scholar
  14. 14.
    Ofran Y, Rost B (2007) ISIS: interaction sites identified from sequence. Bioinformatics 23(2):e13–e16. https://doi.org/10.1093/bioinformatics/btl303 CrossRefPubMedGoogle Scholar
  15. 15.
    Res I, Mihalek I, Lichtarge O (2005) An evolution based classifier for prediction of protein interfaces without using protein structures. Bioinformatics 21(10):2496–2501. https://doi.org/10.1093/bioinformatics/bti340 CrossRefPubMedGoogle Scholar
  16. 16.
    Weigt M, White RA, Szurmant H, Hoch JA, Hwa T (2009) Identification of direct residue contacts in protein-protein interaction by message passing. Proc Natl Acad Sci U S A 106(1):67–72. https://doi.org/10.1073/pnas.0805923106 CrossRefPubMedGoogle Scholar
  17. 17.
    Marks DS, Hopf TA, Sander C (2012) Protein structure prediction from sequence variation. Nat Biotechnol 30(11):1072–1080. https://doi.org/10.1038/nbt.2419 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ovchinnikov S, Kinch L, Park H, Liao Y, Pei J, Kim DE, Kamisetty H, Grishin NV, Baker D (2015) Large-scale determination of previously unsolved protein structures using evolutionary information. elife 4:e09248. https://doi.org/10.7554/eLife.09248 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Andreani J, Faure G, Guerois R (2012) Versatility and invariance in the evolution of homologous heteromeric interfaces. PLoS Comput Biol 8(8):e1002677. https://doi.org/10.1371/journal.pcbi.1002677 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Andreani J, Faure G, Guerois R (2013) InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution. Bioinformatics 29(14):1742–1749. https://doi.org/10.1093/bioinformatics/btt260 CrossRefPubMedGoogle Scholar
  21. 21.
    Garzon JI, Lopez-Blanco JR, Pons C, Kovacs J, Abagyan R, Fernandez-Recio J, Chacon P (2009) FRODOCK: a new approach for fast rotational protein-protein docking. Bioinformatics 25(19):2544–2551. https://doi.org/10.1093/bioinformatics/btp447 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dong GQ, Fan H, Schneidman-Duhovny D, Webb B, Sali A (2013) Optimized atomic statistical potentials: assessment of protein interfaces and loops. Bioinformatics 29(24):3158–3166. https://doi.org/10.1093/bioinformatics/btt560 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yu J, Andreani J, Ochsenbein F, Guerois R (2017) Lessons from (co-)evolution in the docking of proteins and peptides for CAPRI rounds 28-35. Proteins 85(3):378–390. https://doi.org/10.1002/prot.25180 CrossRefPubMedGoogle Scholar
  24. 24.
    Nakamura Y, Umehara T, Tanaka A, Horikoshi M, Padmanabhan B, Yokoyama S (2007) Structural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasome. Biochem Biophys Res Commun 359(3):503–509. https://doi.org/10.1016/j.bbrc.2007.05.138 CrossRefPubMedGoogle Scholar
  25. 25.
    Hwang H, Vreven T, Janin J, Weng Z (2010) Protein-protein docking benchmark version 4.0. Proteins 78(15):3111–3114. https://doi.org/10.1002/prot.22830 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tesmer JJ, Sunahara RK, Gilman AG, Sprang SR (1997) Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science 278(5345):1907–1916CrossRefPubMedGoogle Scholar
  27. 27.
    Lensink MF, Mendez R, Wodak SJ (2007) Docking and scoring protein complexes: CAPRI 3rd edition. Proteins 69(4):704–718. https://doi.org/10.1002/prot.21804 CrossRefPubMedGoogle Scholar
  28. 28.
    Mosca R, Ceol A, Aloy P (2013) Interactome3D: adding structural details to protein networks. Nat Methods 10(1):47–53. https://doi.org/10.1038/nmeth.2289 CrossRefPubMedGoogle Scholar
  29. 29.
    Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33(Web Server):W244–W248. https://doi.org/10.1093/nar/gki408 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Alva V, Nam SZ, Soding J, Lupas AN (2016) The MPI bioinformatics toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res 44(W1):W410–W415. https://doi.org/10.1093/nar/gkw348 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 54:5 6 1–5 6 37. https://doi.org/10.1002/cpbi.3 CrossRefGoogle Scholar
  32. 32.
    Yu J, Picord G, Tuffery P, Guerois R (2015) HHalign-Kbest: exploring sub-optimal alignments for remote homology comparative modeling. Bioinformatics 31(23):3850–3852. https://doi.org/10.1093/bioinformatics/btv441 CrossRefPubMedGoogle Scholar
  33. 33.
    Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191. https://doi.org/10.1093/bioinformatics/btp033 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pupko T, Bell RE, Mayrose I, Glaser F, Ben-Tal N (2002) Rate4Site: an algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues. Bioinformatics 18(Suppl 1):S71–S77CrossRefPubMedGoogle Scholar
  35. 35.
    Teichmann SA (2002) The constraints protein-protein interactions place on sequence divergence. J Mol Biol 324(3):399–407CrossRefPubMedGoogle Scholar
  36. 36.
    Caffrey DR, Somaroo S, Hughes JD, Mintseris J, Huang ES (2004) Are protein-protein interfaces more conserved in sequence than the rest of the protein surface? Protein Sci 13(1):190–202. https://doi.org/10.1110/ps.03323604 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Soding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21(7):951–960. https://doi.org/10.1093/bioinformatics/bti125 CrossRefPubMedGoogle Scholar
  38. 38.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Altenhoff AM, Schneider A, Gonnet GH, Dessimoz C (2011) OMA 2011: orthology inference among 1000 complete genomes. Nucleic Acids Res 39(Database):D289–D294. https://doi.org/10.1093/nar/gkq1238 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Integrative Biology of the Cell (I2BC)CEA, CNRS, Univ. Paris‐Sud, Université Paris-SaclayGif-sur-Yvette CedexFrance

Personalised recommendations