Skip to main content

Flexible Protein-Protein Docking with SwarmDock

  • Protocol
  • First Online:
Protein Complex Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1764))

Abstract

The atomic structures of protein complexes can provide useful information for drug design, protein engineering, systems biology, and understanding pathology. Obtaining this information experimentally can be challenging. However, if the structures of the subunits are known, then it is often possible to model the complex computationally. This chapter provide practical guidelines for docking proteins using the SwarmDock flexible protein-protein docking method, providing an overview of the factors that need to be considered when deciding whether docking is likely to be successful, the preparation of structural input, generation of docked poses, analysis and ranking of docked poses, and the validation of models using external data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein-protein docking. Nucleic Acids Res 34:310–314

    Article  CAS  Google Scholar 

  2. Lyskov S, Gray JJ (2008) The RosettaDock server for local protein-protein docking. Nucleic Acids Res 36:W233–W238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Garzon JI, Lopéz-Blanco JR, Pons C et al (2009) FRODOCK: a new approach for fast rotational protein-protein docking. Bioinformatics 25(19):2544–2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Macindoe G, Mavridis L, Venkatraman V et al (2010) HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res 38:W445–W449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mashiach E, Schneidman-Duhovny D, Peri A et al (2010) An integrated suite of fast docking algorithms. Proteins 78(15):3197–3204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang S-Y, Zou X (2010) MDockPP: a hierarchical approach for protein-protein docking and its application to CAPRI rounds 15-19. Proteins 78(15):3096–3103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pierce BG, Hourai Y, Weng Z (2011) Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS One 6(9):e24657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiménez-García B, Pons C, Fernández-Recio J (2013) pyDockWEB: a web server for rigid-body protein-protein docking using electrostatics and desolvation scoring. Bioinformatics 29(13):1698–1699

    Article  CAS  PubMed  Google Scholar 

  9. van Zundert GCP, Bonvin AMJJ (2014) Modeling protein-protein complexes using the HADDOCK webserver. Methods Mol Biol 1137:163–179

    Article  CAS  PubMed  Google Scholar 

  10. Viswanath S, Ravikant DVS, Elber R (2014) DOCK/PIERR: web server for structure prediction of protein-protein complexes. Methods Mol Biol 1137:199–207

    Article  CAS  PubMed  Google Scholar 

  11. Esquivel-Rodriguez J, Filos-Gonzalez V, Li B, Kihara D (2014) Pairwise and multimeric protein-protein docking using the LZerD program suite. Methods Mol Biol 1137:209–234

    Article  CAS  PubMed  Google Scholar 

  12. de Vries SJ, Schindler CEM, Chauvot de Beauchêne I, Zacharias M (2015) A web interface for easy flexible protein-protein docking with ATTRACT. Biophys J 108(3):462–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kozakov D, Hall D, Xia B et al (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12(2):255–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee H, Seok C (2017) Template-based prediction of protein-peptide interactions by using GalaxyPepDock. Methods Mol Biol 1561:37–47

    Article  CAS  PubMed  Google Scholar 

  15. Moal IH, Bates PA (2010) SwarmDock and the use of normal modes in protein-protein docking. Int J Mol Sci 11(10):3623–3648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li X, Moal IH, Bates PA (2010) Detection and refinement of encounter complexes for protein–protein docking: taking account of macromolecular crowding. Proteins 78(15):3189–3196

    Article  CAS  PubMed  Google Scholar 

  17. Torchala M, Moal IH, Chaleil RA et al (2013) SwarmDock: a server for flexible protein-protein docking. Bioinformatics 29(6):807–809

    Article  CAS  PubMed  Google Scholar 

  18. Torchala M, Bates PA (2014) Predicting the structure of protein-protein complexes using the SwarmDock web server. Methods Mol Biol 1137:181–197

    Article  CAS  PubMed  Google Scholar 

  19. Vajda S, Hall DR, Kozakov D (2013) Sampling and scoring: a marriage made in heaven. Proteins 81(11):1874–1884

    Article  CAS  PubMed  Google Scholar 

  20. Moal IH, Torchala M, Bates PA, Fernandez-Recio J (2013) The scoring of poses in protein-protein docking: current capabilities and future directions. BMC Bioinformatics 14:286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barradas-Bautista D, Moal IH, Fernández-Recio J (2017) A systematic analysis of scoring functions in rigid-body protein docking: the delicate balance between the predictive rate improvement and the risk of overtraining. Proteins. https://doi.org/10.1002/prot.25289

  22. Hayes TW, Moal IH (2017) Modeling protein conformational transition pathways using collective motions and the LASSO method. J Chem Theory Comput 13(3):1401–1410

    Article  CAS  PubMed  Google Scholar 

  23. Liu S, Zhang C, Zhou H, Zhou Y (2004) A physical reference state unifies the structure-derived potential of mean force for protein folding and binding. Proteins 56(1):93–101

    Article  CAS  PubMed  Google Scholar 

  24. Kennedy J, Eberhart R (1995) Particle swarm optimization. IEEE International Conference on Neural Networks, Perth

    Book  Google Scholar 

  25. Solis FJ, Wets RJ-B (1981) Minimization by random search techniques. Math Oper Res 6(1):19–30

    Article  Google Scholar 

  26. Tobi D (2010) Designing coarse grained-and atom based-potentials for protein-protein docking. BMC Struct Biol 10:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Torchala M, Moal IH, Chaleil RA et al (2013) A Markov-chain model description of binding funnels to enhance the ranking of docked solutions. Proteins 81(12):2143–2149

    Article  CAS  PubMed  Google Scholar 

  28. Moal IH, Barradas-Bautista D, Jiménez-García B et al (2017) IRaPPA: information retrieval based integration of biophysical models for protein assembly selection. Bioinformatics 33(12):1806–1813. https://doi.org/10.1093/bioinformatics/btx068

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dobbins SE, Lesk VI, Sternberg MJE (2008) Insights into protein flexibility: the relationship between normal modes and conformational change upon protein-protein docking. Proc Natl Acad Sci U S A 105(30):10390–10395

    Article  PubMed  PubMed Central  Google Scholar 

  30. Karaca E (1993) Bonvin AMJJ (2011) a multidomain flexible docking approach to deal with large conformational changes in the modeling of biomolecular complexes. Structure 19(4):555–565

    Article  CAS  Google Scholar 

  31. Marsh JA, Teichmann SA (2011) Relative solvent accessible surface area predicts protein conformational changes upon binding. Struct 19(6):859–867

    Article  CAS  Google Scholar 

  32. Chen H, Sun Y, Shen Y (2017) Predicting protein conformational changes for unbound and homology docking: learning from intrinsic and induced flexibility. Proteins 85(3):544–556

    Article  CAS  PubMed  Google Scholar 

  33. Wang Q, Canutescu AA, Dunbrack RL (2008) SCWRL and MolIDE: computer programs for side-chain conformation prediction and homology modeling. Nat Protoc 3(12):1832–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Soto CS, Fasnacht M, Zhu J et al (2008) Loop modeling: sampling, filtering, and scoring. Proteins 70(3):834–843

    Article  CAS  PubMed  Google Scholar 

  35. Brooks BR, Brooks CL, Mackerell AD et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Suhre K, Sanejouand Y-H (2004) ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res 32:W610–W614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Engelbrecht AP (2005) Fundamentals of computational swarm intelligence. Wiley, Hoboken, NJ

    Google Scholar 

  38. Moal IH, Jimenez-Garcia B, Fernandez-Recio J (2015) CCharPPI web server: computational characterization of protein-protein interactions from structure. Bioinformatics 31(1):123–125

    Article  CAS  PubMed  Google Scholar 

  39. Pfeiffenberger E, Chaleil RAG, Moal IH, Bates PA (2017) A machine learning approach for ranking clusters of docked protein-protein complexes by pairwise cluster comparison. Proteins 85(3):528–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van Zundert GCP, Rodrigues JPGLM, Trellet M et al (2016) The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428(4):720–725

    Article  CAS  PubMed  Google Scholar 

  41. Svergun DI, Richard S, Koch MH et al (1998) Protein hydration in solution: experimental observation by x-ray and neutron scattering. Proc Natl Acad Sci U S A 95(5):2267–2272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Svergun D, Barberato C, Koch MHJ (1995) CRYSOL – a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28(6):768–773

    Article  CAS  Google Scholar 

  43. Shvartsburg AA, Jarrold MF (1996) An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem Phys Lett 261(1–2):86–91

    Article  CAS  Google Scholar 

  44. Lasker K, Sali A, Wolfson HJ (2010) Determining macromolecular assembly structures by molecular docking and fitting into an electron density map. Proteins 78(15):3205–3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Russel D, Lasker K, Webb B et al (2012) Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol 10(1):e1001244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moal IH, Fernández-Recio J (2012) SKEMPI: a structural kinetic and energetic database of mutant protein interactions and its use in empirical models. Bioinformatics 28(20):2600–2607

    Article  CAS  PubMed  Google Scholar 

  47. Fowler DM, Fields S (2014) Deep mutational scanning: a new style of protein science. Nat Methods 11(8):801–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Andreani J, Faure G, Guerois R (2012) Versatility and invariance in the evolution of homologous heteromeric interfaces. PLoS Comput Biol 8(8):e1002677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reichmann D, Rahat O, Albeck S et al (2005) The modular architecture of protein-protein binding interfaces. Proc Natl Acad Sci U S A 102(1):57–62

    Article  CAS  PubMed  Google Scholar 

  50. McDowall MD, Scott MS, Barton GJ (2009) PIPs: human protein-protein interaction prediction database. Nucleic Acids Res 37:D651–D656

    Article  CAS  PubMed  Google Scholar 

  51. Liu F, Rijkers DTS, Post H, Heck AJR (2015) Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Nat Methods 12(12):1179–1184

    Article  CAS  PubMed  Google Scholar 

  52. Sethi R, Seppälä J, Tossavainen H et al (2014) A novel structural unit in the N-terminal region of filamins. J Biol Chem 289(12):8588–8598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kao A, Chiu C-l, Vellucci D et al (2011) Development of a novel cross-linking strategy for fast and accurate identification of cross-linked peptides of protein complexes. Mol Cell Proteomics. https://doi.org/10.1074/mcp.M110.002212

Download references

Acknowledgments

This work was supported by the European Molecular Biology Laboratory [IHM], the Biotechnology and Biological Sciences Research Council [Future Leader Fellowship BB/N011600/1 to IHM], and the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001003), the UK Medical Research Council (FC001003), and the Wellcome Trust (FC001003) [R.A.G.C., P.A.B.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain H. Moal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Moal, I.H., Chaleil, R.A.G., Bates, P.A. (2018). Flexible Protein-Protein Docking with SwarmDock. In: Marsh, J. (eds) Protein Complex Assembly. Methods in Molecular Biology, vol 1764. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7759-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7759-8_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7758-1

  • Online ISBN: 978-1-4939-7759-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics